COFINALITY OF NORMAL IDEALS ON $P_{\kappa}(\lambda)$ II

RY

PIERRE MATET

Université de Caen-CNRS, Mathématiques, BP 5186 14032 Caen Cedex, France e-mail: matet@math.unicaen.fr

AND

CÉDRIC PÉAN*

Université de Caen-CNRS, Mathématiques, BP 5186 14032 Caen Cedex, France

AND

SAHARON SHELAH**

Institute of Mathematics, The Hebrew University of Jerusalem 91904 Jerusalem, Israel and

Department of Mathematics, Rutgers University
New Brunswick, NJ 08854, USA
e-mail: shelah@math.huji.ac.il

ABSTRACT

For an ideal J on an infinite set X with $\operatorname{add}(J) = \kappa$, let $\operatorname{\overline{cof}}(J)$ be the smallest size of any subfamily Y of J with the property that any member of J can be covered by less than κ members of Y. We study the value of $\operatorname{\overline{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}} \mid A)$ for A in $(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$, where $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}$ denotes the smallest $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$. We also discuss the problem of whether there exists a set A such that $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} = I_{\kappa,\lambda} \mid A$, or even $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} \mid A = I_{\kappa,\lambda} \mid A$.

^{*} Some of the material in this paper originally appeared as part of the author's doctoral dissertation completed at the Université de Caen, 1998.

^{**} Partially supported by the Israel Science Foundation. Publication 813. Received July 10, 2000 and in revised form January 31, 2005

0. Introduction

In [7] we introduced the notion of a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$. We gave necessary and sufficient conditions for the existence of such ideals and described the smallest one, denoted by $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}$. Furthermore, we determined the cofinality of this ideal. In the present paper the centre of our investigations is the reduced cofinality of $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}$. For an ideal J on $P_{\kappa}(\lambda)$, its reduced cofinality $\overline{\operatorname{cof}}(J)$ is the smallest size of any subcollection Y of J such that every element of the ideal is covered by the union of less than κ many members of Y. This notion permits a finer analysis, as we have $\operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}} \mid A) = \operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})$ for all A, whereas there may exist a set A such that $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}} \mid A) < \overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})$. Moreover, it seems more appropriate than the classical notion of cofinality for handling situations when λ or δ is a singular cardinal of cofinality less than κ .

Johnson [4] was the first to show that there may exist a set A such that $NS_{\kappa,\lambda}|A=I_{\kappa,\lambda}|$ A. He was quickly followed by Baumgartner (see [4]) whose example is more widely applicable. Péan asked in his thesis whether it is consistent that $NS_{\kappa,\lambda}=I_{\kappa,\lambda}|$ A for some A. Donder, Koepke and Levinski [2] proved that there is no such A in case $cf(\lambda) \geq \kappa$, a fact which was rediscovered by Shelah [10] and Shioya [11]. Shelah [10] also obtained a positive result. Namely, he established that $NS_{\kappa,\lambda}=I_{\kappa,\lambda}|$ A for some A if λ is a strong limit cardinal of cofinality less than κ . So under GCH, there exists A such that $NS_{\kappa,\lambda}=I_{\kappa,\lambda}|$ A if and only if $cf(\lambda)<\kappa$. The present paper can be seen as a continuation of [10] in the more general framework of $[\delta]^{<\theta}$ -normality. We use the concept of reduced cofinality as a tool for dealing with the question of whether there exists a set A such that $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}=I_{\kappa,\lambda}|$ A, or even $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|$ $A=I_{\kappa,\lambda}|$ A. We will give a complete answer to this question under GCH.

In Section 1 we review basic material concerning $[\delta]^{<\theta}$ -normal ideals on $P_{\kappa}(\lambda)$. In Section 2 we list some simple properties of $\overline{\operatorname{cof}}(J)$. Sections 3 and 4 are concerned with the evaluation of $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})$ and $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}} \mid A)$. We give an estimate for $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})$ in the case that $\kappa \leq \delta < \lambda$ and present some applications. We prove that $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}) = \lambda$ in the case that λ is a strong limit cardinal of cofinality less than κ . Furthermore, we show that if μ is a singular strong limit cardinal and κ is large enough, then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{\mu}) = \lambda$. We also establish some lower bounds. In particular we prove that if $A \in NS_{\kappa,\lambda}^*$, then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{\kappa} \mid A) \geq \lambda$. Moreover, this inequality is strict in case $cf(\lambda) = \kappa$.

Sections 5 and 6 deal with the problem of whether there exists a set A such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda} \mid A) < \overline{\operatorname{cof}}(I_{\kappa,\lambda})$. We show that if $\lambda \leq \kappa^{+\omega}$ or $A \in NS_{\kappa,\lambda}^*$, then $\overline{\operatorname{cof}}(I_{\kappa,\lambda} \mid A) = \lambda$. For $\kappa = \omega_1$, $\lambda = \kappa^{+(\omega+1)}$ and $\sigma = \kappa^{+\omega}$, we establish

the following: (a) If either \square_{σ}^{*} holds, or $2^{<\kappa} < \sigma$ and $\lambda < \sigma^{<\kappa}$, then there is $A \in NS_{\kappa,\lambda}^{+}$ such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda} \mid A) = \sigma$. (b) $\lambda \longrightarrow [\kappa]_{\sigma,<\kappa}^{2}$ implies that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) = \lambda$ for all $A \in I_{\kappa,\lambda}^{+}$. In Section 7 we give a necessary and sufficient condition for the existence of a set A such that $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} = I_{\kappa,\lambda} \mid A$. We sum up the situation under GCH in a table that lists all quadruples $(\kappa,\lambda,\delta,\theta)$ such that $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} \mid A = I_{\kappa,\lambda} \mid A$ for some A. We also discuss the problem of whether, for $\delta \geq \kappa$, there exists a set A such that $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}} \mid A) < \lambda$. Finally, in Section 8, we show that if GCH holds, $\delta \geq \kappa$ and P is the notion of forcing for adding $(\lambda^{<\kappa})^{+}$ Cohen subsets of κ , then in V^{P} , we have $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} \mid A \neq I_{\kappa,\lambda} \mid A$ for all A.

1. $[\delta]^{<\theta}$ -normal ideals on $P_{\kappa}(\lambda)$

In this section we review basic definitions concerning $[\delta]^{<\theta}$ -normal ideals on $P_{\kappa}(\lambda)$, as well as various results which will be used in later sections, often without quoting them.

Given a set A and a cardinal τ , we let $P_{\tau}(A) = [A]^{<\tau} = \{a \subseteq A : |a| < \tau\}.$

Throughout the paper κ denotes a regular uncountable cardinal, and λ a cardinal with $\lambda \geq \kappa$.

For $a \in P_{\kappa}(\lambda)$, we set $\widehat{a} = \{b \in P_{\kappa}(\lambda) : a \subseteq b\}$.

 $I_{\kappa,\lambda}$ is the set of all $B \subseteq P_{\kappa}(\lambda)$ such that $B \cap \widehat{a} = \emptyset$ for some $a \in P_{\kappa}(\lambda)$.

By an ideal on $P_{\kappa}(\lambda)$ we mean a collection J of subsets of $P_{\kappa}(\lambda)$ such that (i) $P(B) \subseteq J$ for all $B \in J$, (ii) $\cup Y \in J$ for all $Y \subseteq J$ with $0 < |Y| < \kappa$, (iii) $I_{\kappa,\lambda} \subseteq J$, and (iv) $P_{\kappa}(\lambda) \notin J$.

Given an ideal J on $P_{\kappa}(\lambda)$, we let

$$J^+ = P(P_{\kappa}(\lambda)) - J$$
 and $J^* = \{B \subseteq P_{\kappa}(\lambda) : P_{\kappa}(\lambda) - B \in J\}.$

For $A \in J^+$, we let $J \mid A = \{B \subseteq P_{\kappa}(\lambda) : B \cap A \in J\}$. $\operatorname{cof}(J)$ is the least cardinality of any $S \subseteq J$ with $J = \bigcup_{B \in S} P(B)$.

It is simple to see that $I_{\kappa,\lambda}$ is an ideal on $P_{\kappa}(\lambda)$. $u(\kappa,\lambda)$ is the least cardinality of any $A \subseteq P_{\kappa}(\lambda)$ with $A \in I_{\kappa,\lambda}^+$.

Proposition 1.1 ([7]):

- (i) $u(\kappa, \lambda) > \lambda$.
- (ii) $\operatorname{cof}(I_{\kappa,\lambda} \mid A) = u(\kappa,\lambda)$ for every $A \in I_{\kappa,\lambda}^+$.

Given four cardinals τ, ρ, χ and σ , let $\mathfrak{X}(\tau, \rho, \chi, \sigma)$ be the set of all $X \subseteq P_{\rho}(\tau)$ with the property that for every $a \in P_{\chi}(\tau)$, there is $x \in P_{\sigma}(X) \setminus \{\emptyset\}$ such that

 $a \subseteq \bigcup x$. If $\mathfrak{X}(\tau, \rho, \chi, \sigma) \neq \emptyset$, then we let $cov(\tau, \rho, \chi, \sigma)$ be the least cardinality of any member X of $\mathfrak{X}(\tau, \rho, \chi, \sigma)$.

Proposition 1.2 ([8]):

- (i) Let τ be a cardinal. Then $cov(\tau, \tau^+, \tau^+, 2) = 1$.
- (ii) Let τ be a regular infinite cardinal, and σ be a cardinal with $2 \le \sigma \le \tau$. Then $cov(\tau, \tau, \tau, \sigma) = \tau$.
- (iii) Let τ be an infinite cardinal, ρ be a cardinal with $2 \le \rho < \tau$, and σ be a cardinal with $\sigma \ge 2$. Then $cov(\tau, \rho, 2, \sigma) \ge \tau$.

Proposition 1.3 ([8]):

- (i) $cov(\lambda, \kappa, \kappa, 2) = u(\kappa, \lambda)$.
- (ii) Let ρ be a cardinal with $\kappa \leq \rho \leq \lambda$. Then

$$cov(\lambda^+, \rho, \rho, \kappa) = \lambda^+ \cdot cov(\lambda, \rho, \rho, \kappa).$$

(iii) Let ρ be a cardinal with $\kappa \leq \rho < \lambda$. Assume that λ is a limit cardinal and either $cf(\lambda) < \kappa$, or $cf(\lambda) \geq \rho$. Then

$$cov(\lambda, \rho, \rho, \kappa) = \sup_{\rho < \tau < \lambda} cov(\tau, \rho, \rho, \kappa).$$

(iv) Let ρ be a cardinal such that $cf(\rho) < \kappa < \rho < \lambda$. Then

$$cov(\lambda, \rho, \rho, \kappa) = cov(\lambda, \rho, \rho^+, \kappa).$$

COROLLARY 1.4: Let ρ be a regular cardinal such that $\kappa < \rho \le \lambda < \rho^{+\kappa}$. Then $cov(\lambda, \rho, \rho, \kappa) = \lambda$.

Throughout the paper δ denotes an ordinal with $1 \le \delta \le \lambda$, and θ a cardinal with $2 \le \theta \le \kappa$.

We set $\overline{\theta} = \theta$ if $\theta < \kappa$, or $\theta = \kappa$ and κ is a limit cardinal, and $\overline{\theta} = \nu$ if $\theta = \kappa = \nu^+$.

Given $X_e \subseteq P_{\kappa}(\lambda)$ for $e \in P_{\theta}(\delta)$, we let

$$\nabla_{e \in P_{\theta}(\delta)} X_e = \bigcup_{e \in P_{\theta}(\delta)} \{ a \in X_e : e \in P_{|a \cap \theta|}(a \cap \delta) \}.$$

Given an ideal J on $P_{\kappa}(\lambda)$, $\nabla^{[\delta]^{<\theta}}J$ is the set of all $B\subseteq P_{\kappa}(\lambda)$ for which one can find $B_e\in J$ for $e\in P_{\theta}(\delta)$ so that

$$B \subseteq \{a \in P_{\kappa}(\lambda) : a \cap \theta = \emptyset\} \cup (\nabla_{e \in P_{\theta}(\delta)} B_e).$$

We say that J is $[\delta]^{<\theta}$ -normal if $J = \nabla^{[\delta]^{<\theta}} J$.

Proposition 1.5 ([7]):

- (i) Assume that $\delta < \kappa$, or $\theta < \kappa$, or κ is not a limit cardinal. Then there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$ if and only if $|P_{\overline{\theta}}(\mu)| < \kappa$ for every cardinal $\mu < \kappa \cap (\delta + 1)$.
- (ii) Assume that $\delta \geq \kappa$, $\theta = \kappa$ and κ is a limit cardinal. Then there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$ if and only if κ is Mahlo.
- (iii) Assume that $\delta \geq \kappa$ and there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$. Then $\kappa^{<\overline{\theta}} = \kappa$. Moreover, $(\mu^{<\overline{\theta}})^{<\overline{\theta}} = \mu^{<\overline{\theta}}$ for every cardinal $\mu > \kappa$.

If there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$, then $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}$ denotes the smallest such ideal.

Proposition 1.6 ([7]):

- (i) $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} = \nabla^{[\delta]^{<\frac{1}{6}\cdot 3}} I_{\kappa,\lambda}.$ (ii) $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} = NS_{\kappa,\lambda}^{[\delta]^{<\theta \cdot \aleph_0}}.$
- (iii) If $\delta < \kappa$, then $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} = I_{\kappa,\lambda}$.

For $f: P_{\theta}(\delta) \longrightarrow P_{\kappa}(\lambda), C_f^{\kappa,\lambda}$ denotes the set of all $a \in P_{\kappa}(\lambda)$ such that $a \cap \theta \neq \emptyset$ and $f(e) \subseteq a$ for every $e \in P_{|a \cap \theta|}(a \cap \delta)$.

Proposition 1.7 ([7]):

- (i) Given $B \subseteq P_{\kappa}(\lambda)$, $B \in NS_{\kappa,\lambda}^{[\delta]^{<\theta}}$ if and only if $B \cap C_f^{\kappa,\lambda} = \emptyset$ for some $f: P_{\theta,3}(\delta) \longrightarrow P_{\kappa}(\lambda).$
- (ii) Suppose $\delta \geq \kappa$. Then given $B \subseteq P_{\kappa}(\lambda), B \in NS_{\kappa,\lambda}^{[\delta]^{<\theta}}$ if and only if $B \cap \{a \in C_a^{\kappa,\lambda} : a \cap \kappa \in \kappa\} = \emptyset \text{ for some } g : P_{\overline{\theta},3}(\delta) \longrightarrow P_3(\lambda).$

Given $X_{\alpha} \subseteq P_{\kappa}(\lambda)$ for $\alpha < \delta$, we let $\nabla_{\alpha < \delta} X_{\alpha} = \bigcup_{\alpha < \delta} (X_{\alpha} \cap \{\alpha\})$.

Given an ideal J on $P_{\kappa}(\lambda)$, $\nabla^{\delta}J$ denotes the set of all $B\subseteq P_{\kappa}(\lambda)$ for which one can find $B_{\alpha} \in J$ for $\alpha < \delta$ so that $B \subseteq (P_{\kappa}(\lambda) \setminus \{0\}) \cup \nabla_{\alpha < \delta} B_{\alpha}$. J is called δ -normal if $J = \nabla^{\delta} J$.

 $NS_{\kappa,\lambda}^{\delta}$ denotes the smallest δ -normal ideal on $P_{\kappa}(\lambda)$.

Note that $NS_{\kappa,\lambda}^{\lambda} = NS_{\kappa,\lambda}$.

Proposition 1.8 ([7]): $NS_{\kappa,\lambda}^{\delta} = NS_{\kappa,\lambda}^{[\delta]^{<2}}$.

Given a cardinal $\mu > 0$, $\mathfrak{d}^{\mu}_{\kappa,\lambda}$ is the least cardinality of any family \mathcal{F} of functions from μ to $P_{\kappa}(\lambda)$ such that for every $g: \mu \longrightarrow P_{\kappa}(\lambda)$, there is $f \in \mathcal{F}$ with the property that $g(\alpha) \subseteq f(\alpha)$ for every $\alpha < \mu$.

Proposition 1.9 ([7]): Let $\mu > 0$ be a cardinal. Then

- (i) $\mathfrak{d}^{\mu}_{\kappa,\lambda} \geq u(\kappa,\lambda)$.
- (ii) $cf(\mathfrak{d}^{\mu}_{\kappa,\lambda}) > \mu$.
- (iii) If $\mu \ge \kappa$ and $\lambda \ge 2^{\mu}$, then $\mathfrak{d}^{\mu}_{\kappa,\lambda} = \lambda^{\mu}$.
- (iv) If $\lambda \geq 2^{<\kappa}$, then $\mathfrak{d}^{\mu}_{\kappa,\lambda} = \mathfrak{d}^{\mu}_{\kappa,\lambda^{<\kappa}}$.

Proposition 1.10 ([7]):

- (i) If J is a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$, then $\operatorname{cof}(J) \geq \mathfrak{d}_{\kappa,\lambda}^{|P_{\overline{\theta}}(\delta)|}$. (ii) $\operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}} \mid A) = \mathfrak{d}_{\kappa,\lambda}^{|P_{\overline{\theta}}(\delta)|}$ for every $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$.

2. $\overline{\operatorname{cof}}(J)$

In this section we introduce the notion of the reduced cofinality $\overline{\operatorname{cof}}(J)$ of an ideal J on $P_{\kappa}(\lambda)$.

Definition: Given an ideal J on $P_{\kappa}(\lambda)$, $\overline{\operatorname{cof}}(J)$ is the least cardinality of any $Z \subseteq J$ such that for every $B \in J$, there is $x \in P_{\kappa}(Z)$ with $B \subseteq \cup x$.

The following collects some elementary facts.

PROPOSITION 2.1: Let J be an ideal on $P_{\kappa}(\lambda)$. Then

- (i) $\kappa < \overline{\operatorname{cof}}(J) < \operatorname{cof}(J) \le u(\kappa, \overline{\operatorname{cof}}(J))$.
- (ii) If $\overline{\operatorname{cof}}(J) \leq \lambda$, then $\operatorname{cof}(J) = u(\kappa, \lambda)$.
- (iii) $\overline{\operatorname{cof}}(J) \leq \lambda^{<\kappa}$ if and only if $\operatorname{cof}(J) \leq \lambda^{<\kappa}$.
- (iv) $\overline{\operatorname{cof}}(J \mid A) < \overline{\operatorname{cof}}(J)$ for all $A \in J^+$.

Proof: The proofs of (i) and (iv) are easy and left to the reader. It is simple to see that $cof(J) > u(\kappa, \lambda)$. Part (ii) follows from this and (i). For (iii), use (i) and the fact that $u(\kappa, \lambda^{<\kappa}) = \lambda^{<\kappa}$.

PROPOSITION 2.2: Assume $\lambda \leq \kappa^{+\omega}$. Then $\overline{\operatorname{cof}}(J) \geq \lambda$ for any ideal J on $P_{\kappa}(\lambda)$.

Proof: Set $\lambda = \kappa^{+\alpha}$, and let J be an ideal on $P_{\kappa}(\lambda)$. Proposition 2.1 gives $\overline{\mathrm{cof}}(J) \geq \kappa$, so the result is immediate in case $\alpha = 0$. Now suppose $\alpha > 0$. We have $cof(J) \ge u(\kappa, \kappa^{+\alpha}) \ge \kappa^{+\alpha}$. It is well-known (see e.g. Corollary 4.2 in [3]) that $u(\kappa, \kappa^{+n}) = \kappa^{+n}$ for all $n \in \omega$. We can conclude, using Proposition 2.1, that $\overline{\operatorname{cof}}(J) > \kappa^{+n}$ for every $n \in \alpha$.

3.
$$\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})$$

It was shown in [7] that for $\delta \geq \kappa$,

$$\operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) = \operatorname{cof}(NS_{\kappa,|\delta|}^{[|\delta|]^{<\theta}}) \cdot \operatorname{cov}(\lambda, (|\delta|^{<\overline{\theta}})^+, (|\delta|^{<\overline{\theta}})^+, 2).$$

Now we establish a similar formula for $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})$.

PROPOSITION 3.1: Assume $\delta \geq \kappa$. Then

$$\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) = \overline{\operatorname{cof}}(NS_{\kappa,|\delta|}^{[|\delta|]^{<\theta}}) \cdot \operatorname{cov}(\lambda, (|\delta|^{<\overline{\theta}})^+, (|\delta|^{<\overline{\theta}})^+, \kappa).$$

Proof: Since $NS_{\kappa,\lambda}^{[\kappa+\xi]^{<\theta}} = NS_{\kappa,\lambda}^{[\kappa]^{<\theta}}$ for every $\xi < \kappa$ ([7]), we can assume w.l.o.g. that $\delta = \kappa$ or $\delta \geq \kappa + \kappa$. Select a bijection $j \colon |\delta| \longrightarrow \delta$ so that $j(\alpha) = \alpha$ for all $\alpha < \kappa$ in case $\delta = \kappa$ or $\delta \geq \kappa^+$, and let i denote its inverse. Define $v \colon P_{\overline{\theta},3}(\delta) \longrightarrow P_{\kappa}(\delta)$ so that

- (i) If $\overline{\theta} < \kappa$, then $v(e) = (\overline{\theta} \cdot 3) \cup j[\overline{\theta} \cdot 3]$.
- (ii) If $\kappa = \overline{\theta}$ and either $\delta = \kappa$ or $\delta \ge \kappa^+$, then $v(e) = \{0\}$.
- (iii) Suppose $\kappa = \overline{\theta}$ and $\kappa < \delta < \kappa^+$. Pick a bijection $q: \kappa \longrightarrow \delta \setminus \kappa$. Now for $\beta \in \kappa$, let $v(\{\beta\}) = \omega \cup \{q(\beta)\}$ and $v(\{q(\beta)\}) = \omega \cup \{\beta\}$.

For $a \in P_{\kappa}(\lambda)$, set $\overline{a} = i[a \cap \delta]$. Now let $a \in C_v^{\kappa,\lambda}$. If $\overline{\theta} < \kappa$, then $\overline{\theta} \cdot 3 \subseteq \overline{a}$ and $\overline{\theta} \cdot 3 \subseteq a$. If $\theta = \kappa$ and either $\delta = \kappa$ or $\delta \geq \kappa^+$, then $\overline{a} \cap (\overline{\theta} \cdot 3) = a \cap (\overline{\theta} \cdot 3)$. If $\overline{\theta} = \kappa$ and $\kappa < \delta < \kappa^+$, then we have $\omega \subseteq a$ and $q[a \cap \kappa] = (a \cap \delta) \setminus \kappa$, consequently $|\overline{a} \cap (\overline{\theta} \cdot 3)| = |\overline{a}| = |a \cap \delta| = |a \cap (\overline{\theta} \cdot 3)|$. So in any case we get $|\overline{a} \cap (\overline{\theta} \cdot 3)| = |a \cap (\overline{\theta} \cdot 3)|$.

CLAIM 1:
$$\overline{\operatorname{cof}}(NS_{\kappa,|\delta|}^{[|\delta|]^{<\theta}}) \leq \overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}).$$

For the proof of Claim 1, select a family $\mathfrak X$ of functions from $P_{\overline{\theta}\cdot3}(\delta)$ to $P_{\kappa}(\lambda)$ so that $|\mathfrak X| = \overline{\cot}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})$ and for every $h: P_{\overline{\theta}\cdot3}(\delta) \longrightarrow P_{\kappa}(\lambda)$, there is $X \in P_{\kappa}(\mathfrak X) \setminus \{\emptyset\}$ with $\bigcap_{g \in X} C_g^{\kappa,\lambda} \subseteq C_h^{\kappa,\lambda}$. For $f: P_{\overline{\theta}\cdot3}(\delta) \longrightarrow P_{\kappa}(\lambda)$, define $\widetilde{f}: P_{\overline{\theta}\cdot3}(|\delta|) \longrightarrow P_{\kappa}(|\delta|)$ by $\widetilde{f}(u) = i[\delta \cap f(j[u])]$. Now fix $h: P_{\overline{\theta}\cdot3}(|\delta|) \longrightarrow P_{\kappa}(|\delta|)$. Set $A = \{a \in P_{\kappa}(\lambda) : \overline{a} \in C_h^{\kappa,|\delta|}\}$. Define $\overline{h}: P_{\overline{\theta}\cdot3}(\delta) \longrightarrow P_{\kappa}(\delta)$ by $\overline{h}(e) = j[h(i[e])]$. Given $a \in C_v^{\kappa,\lambda} \cap C_{\overline{h}}^{\kappa,\lambda}$ and $u \in P_{|\overline{a}\cap(\overline{\theta}\cdot3)|}(\overline{a})$, we have $\overline{h}(j[u]) \subseteq a \cap \delta$ since $j[u] \in P_{|a\cap(\overline{\theta}\cdot3)|}(a \cap \delta)$, and therefore $h(u) \subseteq \overline{a}$. Hence $C_v^{\kappa,\lambda} \cap C_{\overline{h}}^{\kappa,\lambda} \subseteq A$. Thus $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^*$, so there is $X \in P_{\kappa}(\mathfrak X) \setminus \{\emptyset\}$ with $\bigcap_{g \in X} C_g^{\kappa,\lambda} \subseteq A$.

Let $d \in C_{\overline{v}}^{\kappa,|\delta|} \cap (\bigcap_{g \in X} C_{\overline{g}}^{\kappa,|\delta|})$. If $\overline{\theta} < \kappa$, then $\overline{\theta} \cdot 3 \subseteq d$ and $\overline{\theta} \cdot 3 \subseteq j[d]$. If $\overline{\theta} = \kappa$ and either $\delta = \kappa$ or $\delta \geq \kappa^+$, then $d \cap (\overline{\theta} \cdot 3) = j[d] \cap (\overline{\theta} \cdot 3)$. If $\overline{\theta} = \kappa$ and $\kappa < \delta < \kappa^+$, then $\omega \subseteq j[d]$ and $q[j[d] \cap \kappa] = j[d] \setminus \kappa$, hence

 $|d\cap(\overline{\theta}\cdot3)|=|d|=|j[d]|=|j[d]\cap(\overline{\theta}\cdot3)|. \text{ In any case } |d\cap(\overline{\theta}\cdot3)|=|j[d]\cap(\overline{\theta}\cdot3)|.$ Now set

$$a=j[d]\cup \bigg(\bigcup\{g(e):g\in X \text{ and } e\in P_{|j[d]\cap(\overline{\theta}\cdot 3)|}(j[d])\}\bigg).$$

Then $|a| < \kappa$ by Proposition 1.5. It is simple to see that $\overline{a} = d$ and $a \in \bigcap_{g \in X} C_g^{\kappa, \lambda}$. Hence $d \in C_h^{\kappa, |\delta|}$. Thus

$$C_{\widetilde{v}}^{\kappa,|\delta|} \cap \left(\bigcap_{g \in X} C_{\widetilde{g}}^{\kappa,|\delta|}\right) \subseteq C_h^{\kappa,|\delta|}.$$

Now we can conclude that $\overline{\operatorname{cof}}(NS_{\kappa,|\delta|}^{[|\delta|]^{<\theta}}) \leq |\mathfrak{X}|$. This completes the proof of Claim 1.

CLAIM 2:
$$\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) \leq \overline{\operatorname{cof}}(NS_{\kappa,|\delta|}^{[|\delta|]^{<\theta}}) \cdot \operatorname{cov}(\lambda,(|\delta|^{<\overline{\theta}})^+,(|\delta|^{<\overline{\theta}})^+,\kappa).$$

For the proof of Claim 2, set $\sigma = \lambda \cap |\delta|^{<\overline{\theta}}$. Select $\mathcal{Z} \subseteq \{z \subseteq \lambda : |z| = \sigma\}$ so that $|\mathcal{Z}| = \operatorname{cov}(\lambda, (|\delta|^{<\overline{\theta}})^+, (|\delta|^{<\overline{\theta}})^+, \kappa)$ and for every $y \in P_{\sigma^+}(\lambda)$, there is $Z \in P_{\kappa}(\mathcal{Z})$ with $y \subseteq \cup Z$. For $z \in Z$, pick a one-to-one $t_z : z \longrightarrow P_{\overline{\theta} \cdot 3}(\delta)$ and define $k_z : P_{\overline{\theta} \cdot 3}(\delta) \longrightarrow P_{\kappa}(\lambda)$ so that $k_z(t_z(\beta)) = \{\beta\}$ for all $\beta \in z$.

Select a family \mathcal{H} of functions from $P_{\overline{\theta}.3}(|\delta|)$ to $P_{\kappa}(|\delta|)$ so that $|\mathcal{H}| = \overline{\operatorname{cof}}(NS_{\kappa,|\delta|}^{[|\delta|]^{<\theta}})$ and for every $t \colon P_{\overline{\theta}.3}(|\delta|) \longrightarrow P_{\kappa}(|\delta|)$, there is $H \in P_{\kappa}(\mathcal{H}) \setminus \{\emptyset\}$ with $\bigcap_{h \in H} C_h^{\kappa,|\delta|} \subseteq C_t^{\kappa,|\delta|}$. For $h \in H$, define $\widetilde{h} \colon P_{\overline{\theta}.3}(\delta) \longrightarrow P_{\kappa}(\delta)$ by $\widetilde{h}(e) = j[h(i[e])]$.

Now fix $g \colon P_{\overline{\theta} \cdot 3}(\delta) \longrightarrow P_{\kappa}(\lambda)$. Pick $Z \in P_{\kappa}(\mathcal{Z})$ so that $\cup \operatorname{rang}(g) \subseteq \cup Z$. Put $r_e = \bigcup_{z \in Z} \bigcup_{\beta \in z \cap g(e)} t_z(\beta)$ for $e \in P_{\overline{\theta} \cdot 3}(\delta)$. Define $g' \colon P_{\overline{\theta} \cdot 3}(\delta) \longrightarrow P_{\kappa}(\delta)$ by: $g'(e) = r_e$ if $\overline{\theta} < \kappa$, and $g'(e) = r_e \cup |r_e|^+$ otherwise. Also, define $g'' \colon P_{\overline{\theta} \cdot 3}(|\delta|) \longrightarrow P_{\kappa}(|\delta|)$ by g''(x) = i[g'(j[x])]. Select $H \in P_{\kappa}(\mathcal{H}) \setminus \{\emptyset\}$ so that $\bigcap_{h \in H} C_h^{\kappa, |\delta|} \subseteq C_{g''}^{\kappa, |\delta|}$. Now let $a \in C_v^{\kappa, \lambda} \cap (\bigcap_{h \in H} C_h^{\kappa, \lambda}) \cap (\bigcap_{z \in Z} C_{k_z}^{\kappa, \lambda})$ and $e \in P_{|a \cap (\overline{\theta} \cdot 3)|}(a \cap \delta)$. Clearly $\overline{a} \in \bigcap_{h \in H} C_h^{\kappa, |\delta|}$, hence $\overline{a} \in C_{g''}^{\kappa, |\delta|}$. From this we can infer that $g'(e) \subseteq a \cap \delta$. So given $z \in Z$, we get that for each $\beta \in z \cap g(e)$, $t_z(\beta) \in P_{|a \cap (\overline{\theta} \cdot 3)|}(a \cap \delta)$, hence $k_z(t_z(\beta)) \subseteq a$. Thus $z \cap g(e) \subseteq a$. Since $g(e) = \bigcup_{z \in Z} (z \cap g(e))$, this gives $g(e) \subseteq a$. Thus

$$C_v^{\kappa,\lambda}\cap \bigg(\bigcap_{h\in H}C_{\widetilde{h}}^{\kappa,\lambda}\bigg)\cap \bigg(\bigcap_{z\in Z}C_{k_z}^{\kappa,\lambda}\bigg)\subseteq C_g^{\kappa,\lambda}.$$

It easily follows that $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) \leq |\mathcal{H}| \cdot |\mathcal{Z}|$. This completes the proof of Claim 2.

CLAIM 3: $cov(\lambda, (|\delta|^{<\overline{\theta}})^+, (|\delta|^{<\overline{\theta}})^+, \kappa) \leq \overline{cof}(NS_{\kappa}^{[\delta]^{<\theta}}).$

To prove Claim 3, select a family \mathfrak{X} of functions from $P_{\overline{\theta},3}(\delta)$ to $P_{\kappa}(\lambda)$ so that $|\mathfrak{X}| = \overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})$ and for every $h: P_{\overline{\theta}\cdot 3}(\delta) \longrightarrow P_{\kappa}(\lambda)$, there exists $X \in$ $P_{\kappa}(\mathfrak{X})\setminus\{\emptyset\}$ with $\bigcap_{g\in X}C_g^{\kappa,\lambda}\subseteq C_h^{\kappa,\lambda}$. For $g\in X$, set $B_g=\delta\cup(\cup\operatorname{ran}(g))$. Notice that $|B_a| < |\delta|^{<\overline{\theta}}$.

Now fix $A \subseteq \lambda$ with $|A| \leq |\delta|^{<\overline{\theta}}$. Pick $h: P_{\overline{\theta},3}(\delta) \longrightarrow P_{\kappa}(\lambda)$ so that $A \subseteq$ $\cup \operatorname{ran}(h)$. Then there is $X \in P_{\kappa}(\mathfrak{X}) \setminus \{\emptyset\}$ such that $\bigcap_{g \in X} C_g^{\kappa,\lambda} \subseteq C_h^{\kappa,\lambda}$. For $e \in P_{\overline{\theta},3}(\delta)$, define $z_e \in P_{\kappa}(\lambda)$ as follows. First suppose $\overline{\theta} < \kappa$. Put $\rho = \overline{\theta} \cdot \aleph_0$ if $\overline{\theta} \cdot \aleph_0$ is a regular cardinal, and $\rho = (\overline{\theta} \cdot \aleph_0)^+$ otherwise. Define s_α for $\alpha < \rho$ by: $s_0 = e \cup \rho$ and for $\alpha > 0$,

$$s_{\alpha} = \bigcup_{\beta < \alpha} s_{\beta} \cup \bigcup \bigg\{ g(d) : g \in X \text{ and } d \in P_{\overline{\theta} \cdot 3} \bigg(\bigg(\bigcup_{\beta < \alpha} s_{\beta} \bigg) \cap \delta \bigg) \bigg\}.$$

Now let $z_e = \bigcup_{\alpha < \rho} s_{\alpha}$. Next suppose $\overline{\theta} = \kappa$. Define y_{α} and ξ_{α} for $\alpha < \kappa$ by:

- $(0) \ y_0 = e \cup |e|^+ \cup \omega.$
- (1) $\xi_{\alpha} = \bigcup (y_{\alpha} \cap \kappa).$
- (2) $y_{\alpha+1} = y_{\alpha} \cup (\xi_{\alpha} + 2) \cup \bigcup \{g(d) : g \in X \text{ and } d \subseteq y_{\alpha} \cap \delta\}.$
- (3) $y_{\alpha} = \bigcup_{\beta < \alpha} y_{\beta}$ if α is an infinite limit ordinal.

Select a regular infinite cardinal τ so that $\xi_{\tau} = \tau$. Now let $z_e = y_{\tau}$. It is simple to see that $z_e \in \bigcap_{q \in X} C_q^{\kappa,\lambda}$ and $e \in P_{|z_e \cap (\overline{\theta},3)|}(z_e \cap \delta)$. Hence $z_e \in C_h^{\kappa,\lambda}$ and $h(e) \subseteq z_e \subseteq \bigcup_{g \in X} B_g$. So $A \subseteq \bigcup_{e \in P_{\overline{a}_g}(\delta)} h(e) \subseteq \bigcup_{g \in X} B_g$. It follows that $\mathrm{cov}(\lambda,(|\delta|^{<\overline{\theta}})^+,(|\delta|^{<\overline{\theta}})^+,\kappa)\leq |\mathfrak{X}|. \text{ This completes the proof of Claim 3.}$

Corollary 3.2: Assume $\delta \geq \kappa$. Then $\overline{\operatorname{cof}}(NS_{\kappa.\lambda}^{[\delta]^{<\theta}}) = \overline{\operatorname{cof}}(NS_{\kappa.\lambda}^{[[\delta]]^{<\theta}})$.

- COROLLARY 3.3: Let μ be a cardinal with $\kappa \leq \mu < \lambda$. Then (i) If $\mu^{<\overline{\theta}} \geq \lambda$, then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\mu]^{<\theta}}) = \overline{\operatorname{cof}}(NS_{\kappa,\mu}^{[\mu]^{<\theta}})$.
 - (ii) If $\mu^{<\overline{\theta}} < \lambda < (\mu^{<\overline{\theta}})^{+\kappa}$, then $\overline{\cot}(NS^{[\mu]^{<\theta}}) = \lambda \cdot \overline{\cot}(NS^{[\mu]^{<\theta}})$.
- (iii) If $\mu^{<\overline{\theta}} \leq \lambda$, then $\overline{\cot}(NS_{\kappa,\lambda^{+}}^{[\mu]^{<\theta}}) = \lambda^{+} \cdot \overline{\cot}(NS_{\kappa^{-\lambda}}^{[\mu]^{<\theta}})$.
- (iv) If λ is a limit cardinal and either $cf(\lambda) < \kappa$ or $cf(\lambda) > \mu^{<\overline{\theta}}$, then

$$\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\mu]^{<\theta}}) = \sup_{\mu < \tau < \lambda} \overline{\operatorname{cof}}(NS_{\kappa,\tau}^{[\mu]^{<\theta}}).$$

Proof: Use Propositions 1.2 and 1.3 and Corollary 1.4.

It follows from (i) that $\overline{\operatorname{cof}}(NS_{\kappa,\lambda<\overline{\theta}}^{[\lambda]^{<\theta}}) = \overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})$. Concerning (iv), let us remark that (by Corollary 4.6 below) if μ is a cardinal with $\kappa \leq \mu < \lambda$,

and λ a strong limit cardinal with $\kappa \leq cf(\lambda) \leq \mu^{<\overline{\theta}}$, then $\overline{cof}(NS_{\kappa,\lambda}^{[\mu]^{<\theta}}) > \sup_{\mu \leq \tau \leq \lambda} \overline{cof}(NS_{\kappa,\tau}^{[\mu]^{<\theta}})$.

COROLLARY 3.4: Let μ and ρ be two cardinals with $\kappa \leq \mu \leq \rho < \lambda$. Then $\overline{\cot}(NS_{\kappa,\lambda}^{[\mu]^{<\theta}}) \geq \overline{\cot}(NS_{\kappa,\rho}^{[\mu]^{<\theta}})$.

It can also be shown that $\overline{\operatorname{cof}}(NS_{\kappa,\lambda})$ increases with λ .

PROPOSITION 3.5: Let ρ be a cardinal with $\kappa \leq \rho < \lambda$. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}) \geq \overline{\operatorname{cof}}(NS_{\kappa,\rho})$.

Proof: Select a family \mathcal{K} of functions from $P_{\omega}(\lambda)$ to $P_{\kappa}(\lambda)$ so that $|\mathcal{K}| = \overline{\cot}(NS_{\kappa,\lambda})$ and for every $h: P_{\omega}(\lambda) \longrightarrow P_{\kappa}(\lambda)$, there is $K \in P_{\kappa}(\mathcal{K}) \setminus \{\emptyset\}$ with $\bigcap_{k \in K} C_k^{\kappa,\lambda} \subseteq C_k^{\kappa,\lambda}$. For $u \in P_{\omega}(\mathcal{K}) \setminus \{\emptyset\}$, define $u^*: P_{\omega}(\lambda) \longrightarrow P_{\kappa}(\lambda)$ by $u^*(e) = \bigcup_{k \in u} k(e)$, $\overline{u}: P_{\omega}(\rho) \longrightarrow P_{\kappa}(\lambda)$ by $\overline{u}(a) = \bigcap \{x \in C_{u^*}^{\kappa,\lambda} : \{0\} \cup a \subseteq x\}$, and $\widetilde{u}: P_{\omega}(\rho) \longrightarrow P_{\kappa}(\rho)$ by $\widetilde{u}(a) = \overline{u}(a) \cap \rho$.

Now fix $f: P_{\omega}(\rho) \longrightarrow P_{\kappa}(\rho)$. Select $h: P_{\omega}(\lambda) \longrightarrow P_{\kappa}(\rho)$ with $f \subseteq h$, and $K \in P_{\kappa}(\mathcal{K}) \setminus \{\emptyset\}$ with $\bigcap_{k \in K} C_k^{\kappa, \lambda} \subseteq C_h^{\kappa, \lambda}$. Set

$$B = \{ b \in P_{\kappa}(\rho) : \forall u \in P_{\omega}(K) \setminus \{\emptyset\} (b \in C_{\widetilde{u}}^{\kappa,\rho}) \}.$$

Now let $b \in B$. Put

$$y = b \cup \bigcup \{\overline{u}(a) : a \in P_{\omega}(b) \text{ and } u \in P_{\omega}(K) \setminus \{\emptyset\}\}.$$

We have $y \cap \rho = b$ since given $a \in P_{\omega}(b)$ and $u \in P_{\omega}(K) \setminus \{\emptyset\}$, $\overline{u}(a) \cap \rho = \widetilde{u}(a) \subseteq b$. We claim that $y \in \bigcap_{k \in K} C_k^{\kappa, \lambda}$. To prove the claim, fix $k \in K$ and $e \in P_{\omega}(y)$. If $e \subseteq \rho$, then

$$k(e) \subseteq \{k\}^*(e) \subseteq \overline{\{k\}}(e) \subseteq y.$$

Now suppose $e \setminus \rho \neq \emptyset$. Let $e \setminus \rho = \{\xi_i : i \leq m\}$. For $i \leq m$, pick $a_i \in P_{\omega}(b)$ and $u_i \in P_{\omega}(K) \setminus \{\emptyset\}$ so that $\xi_i \in \overline{u_i}(a_i)$. Set $u = \{k\} \cup \bigcup_{i \leq m} u_i$ and $a = (e \cap \rho) \cup \bigcup_{i \leq m} a_i$. Since $e \cap \rho \subseteq a \subseteq \overline{u}(a)$ and $\overline{u_i}(a_i) \subseteq \overline{u}(a)$ for every $i \leq m$, we get $e \subseteq \overline{u}(a)$. Consequently,

$$k(e) \subseteq u^*(e) \subseteq \overline{u}(a) \subseteq y.$$

This completes the proof of the claim.

From the claim we obtain $y \in C_h^{\kappa,\lambda}$. Therefore, for every $d \in P_{\omega}(b)$,

$$f(d) = h(d) \subseteq y \cap \rho = b.$$

This yields $b \in C_f^{\kappa,\rho}$. So $B \subseteq C_f^{\kappa,\rho}$. It easily follows that $\overline{\operatorname{cof}}(NS_{\kappa,\rho}) \leq |\mathcal{K}|$.

PROPOSITION 3.6: Assume $\overline{\theta} \leq cf(\lambda) < \kappa$, and let ν be a cardinal with $\kappa \leq \nu < \lambda$. Then $\overline{\cot}(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}) \leq \sup_{\nu < \rho < \lambda} \overline{\cot}(NS_{\kappa,\rho}^{[\rho]^{<\theta}})$.

Proof: Set $\tau = cf(\lambda)$. Let $<\lambda_{\gamma}: \gamma < \tau>$ be a strictly increasing sequence of cardinals greater than or equal to ν such that $\lambda = \bigcup_{\gamma < \tau} \lambda_{\gamma}$. Given $\gamma < \tau$, select a collection \mathcal{H}_{γ} of functions from $P_{\overline{\theta}.3}(\lambda_{\gamma})$ to $P_{\kappa}(\lambda_{\gamma})$ so that $|\mathcal{H}_{\gamma}| = \overline{\mathrm{cof}}(NS_{\kappa,\lambda_{\gamma}}^{[\lambda_{\gamma}]^{<\theta}})$ and for every $k: P_{\overline{\theta}.3}(\lambda_{\gamma}) \longrightarrow P_{\kappa}(\lambda_{\gamma})$, there is $H \in P_{\kappa}(\mathcal{H}_{\gamma}) \setminus \{\emptyset\}$ with $\bigcap_{h \in H} C_h^{\kappa,\lambda_{\gamma}} \subseteq C_k^{\kappa,\lambda_{\gamma}}$. For $h \in \mathcal{H}_{\gamma}$, define $h': P_{\overline{\theta}.3}(\lambda) \longrightarrow P_{\kappa}(\lambda_{\gamma})$ by $h'(d) = h(d \cap \lambda_{\gamma})$. Notice that $a \cap \lambda_{\gamma} \in C_h^{\kappa,\lambda_{\gamma}}$ for every $a \in C_{h'}^{\kappa,\lambda}$.

Now fix $f: P_{\overline{\theta}.3}(\lambda) \longrightarrow P_{\kappa}(\lambda)$. For $\gamma < \tau$, define $k_{\gamma}: P_{\overline{\theta}.3}(\lambda_{\gamma}) \longrightarrow P_{\kappa}(\lambda_{\gamma})$ by $k_{\gamma}(e) = f(e) \cap \lambda_{\gamma}$, and pick $H_{\gamma} \in P_{\kappa}(\mathcal{H}_{\gamma}) \setminus \{\emptyset\}$ with $\bigcap_{h \in H_{\gamma}} C_h^{\kappa, \lambda_{\gamma}} \subseteq C_{k_{\gamma}}^{\kappa, \lambda_{\gamma}}$. Let $a \in \bigcap_{\gamma < \tau} \bigcap_{h \in H_{\gamma}} C_{h'}^{\kappa, \lambda}$ and $e \in P_{|a \cap (\overline{\theta}.3)|}(a)$. There is $\xi < \tau$ such that $e \subseteq \lambda_{\xi}$. For $\xi \le \gamma < \tau$, we have $a \cap \lambda_{\gamma} \in C_{k_{\gamma}}^{\kappa, \lambda_{\gamma}}$, hence $k_{\gamma}(e) \subseteq a \cap \lambda_{\gamma}$. Therefore, $f(e) \subseteq a$. So $\bigcap_{\gamma < \tau} \bigcap_{h \in H_{\gamma}} C_{h'}^{\kappa, \gamma} \subseteq C_f^{\kappa, \lambda}$. Now we can conclude that $\overline{\operatorname{cof}}(NS_{\kappa, \lambda}^{[\lambda]^{<\theta}}) \le |\bigcup_{\gamma < \tau} \mathcal{H}_{\gamma}|$.

We will see (Propositions 4.3 and 7.7 (ii)) that if λ is a strong limit cardinal, and $cf(\lambda) < \overline{\theta}$ or $cf(\lambda) \ge \kappa$, then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}) > \sup_{\kappa < \rho < \lambda} \overline{\operatorname{cof}}(NS_{\kappa,\rho}^{[\rho]^{<\theta}})$.

COROLLARY 3.7: Assume $cf(\lambda) < \kappa$. Then $\overline{cof}(NS_{\kappa,\lambda}) = \sup_{\kappa < \rho < \lambda} \overline{cof}(NS_{\kappa,\rho})$.

Proof: Use Proposition 3.5.

COROLLARY 3.8: Let μ be a singular strong limit cardinal, ν be a cardinal with $\nu > \mu$, and τ be a cardinal with $2 \le \tau \le cf(\mu)$. Then there exists $\eta < \mu$ such that $\overline{cof}(NS_{\chi,\nu}^{[\mu]^{<\tau}}) = \nu$ for every regular uncountable cardinal χ with $\eta \le \chi < \mu$.

Proof: By a result of Shelah [9], there is a cardinal σ such that $2 \le \sigma < \mu$ and $cov(\nu, \mu, \mu, \sigma) = \nu$. Now let χ be any regular uncountable cardinal with $\sigma \le \chi$ and $cf(\mu) < \chi < \mu$. By Propositions 1.2 and 1.3,

$$\nu \le \operatorname{cov}(\nu, \mu^+, \mu^+, \chi) \le \operatorname{cov}(\nu, \mu, \mu, \chi) \le \operatorname{cov}(\nu, \mu, \mu, \sigma),$$

hence $cov(\nu, \mu^+, \mu^+, \chi) = \nu$. From Proposition 3.6 we can infer that $\overline{cof}(NS_{\chi,\mu}^{[\mu]^{<\tau}}) \leq \mu$. Hence by Proposition 3.1 $\overline{cof}(NS_{\chi,\nu}^{[\mu]^{<\tau}}) = \nu$.

4.
$$\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A)$$

Our aim in this section is to evaluate $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A)$ for A in $(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^{\top}$. Let us first consider a few cases when $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A)$ does not depend on A.

Proposition 4.1:

- (i) Assume that $\lambda = \sigma^+$, $\kappa \leq \delta$, $\sigma = \sigma^{<\kappa}$ and $\sigma^{|\delta|^{<\overline{\theta}}} \leq \lambda$. Then for every $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \lambda$.
- (ii) Assume that $\kappa \leq \delta$ and λ is a limit cardinal such that $cf(\lambda) > |\delta|^{<\overline{\theta}}$. Assume further that $\tau^{|\delta|^{<\overline{\theta}}} < \lambda$ for every cardinal $\tau < \lambda$. Then for every $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \lambda$.
- (iii) Assume that $cf(\lambda) < \kappa \leq \delta$, and $\tau^{(|\delta|^{<\overline{\theta}})} < \lambda$ for every cardinal $\tau < \lambda$. Then for every $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \lambda$ and $\operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \lambda^{cf(\lambda)}$.
- (iv) Assume that λ is a strong limit cardinal and $\overline{\theta} \leq cf(\lambda) < \kappa$. Then for every $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^+$, $\overline{cof}(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|A) = \lambda$ and $cof(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|A) = \lambda^{cf(\lambda)}$.

Proof:

- (i) and (ii) Let $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$. Then $\operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \lambda$ since $\lambda \leq \mathfrak{d}_{\kappa,\lambda}^{|\delta|^{<\overline{\theta}}} \leq \lambda^{(|\delta|^{<\overline{\theta}})} = \lambda$. Furthermore, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \lambda$ since $u(\kappa,\rho) < \lambda$ for every cardinal ρ with $\kappa \leq \rho < \lambda$.
- cardinal ρ with $\kappa \leq \rho < \lambda$.

 (iii) Let $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$. Since $\delta \geq \kappa$ and $2^{(|\delta|^{<\overline{\theta}})} < \lambda$, we get $\operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A)$ $= \mathfrak{d}_{\kappa,\lambda}^{|\delta|^{<\overline{\theta}}} = \lambda^{(|\delta|^{<\overline{\theta}})}.$ Furthermore, since $cf(\lambda) < |\delta|^{<\overline{\theta}}$ and $\tau^{(|\delta|^{<\overline{\theta}})} < \lambda$ for every cardinal $\tau < \lambda$, we have $\lambda^{(|\delta|^{<\overline{\theta}})} = \lambda^{cf(\lambda)}$. With Corollary 3.2 and Corollary 3.3 we obtain

$$\overline{\mathrm{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) \leq \sup_{|\delta| < \tau < \lambda} \mathrm{cof}(NS_{\kappa,\tau}^{[|\delta|]^{<\theta}}) \leq \sup_{|\delta| < \tau < \lambda} \tau^{(|\delta|^{<\overline{\theta}})} \leq \lambda.$$

Finally, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\delta}}|A) \geq \lambda$ since $u(\kappa,\rho) < \lambda^{cf(\lambda)}$ for every cardinal ρ with $\kappa \leq \rho < \lambda$.

(iv) Let $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^+$. Then $cof(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|A) = \mathfrak{d}_{\kappa,\lambda}^{\lambda} = \mathfrak{d}_{\kappa,\lambda}^{\lambda} \leq (\lambda^{\kappa})^{\lambda} = \lambda^{cf(\lambda)}$. On the other hand, since $\lambda \geq 2^{<\kappa}$, we have $\mathfrak{d}_{\kappa,\lambda}^{\lambda} = \mathfrak{d}_{\kappa,\lambda^{<\kappa}}^{\lambda} \geq \lambda^{<\kappa} = \lambda^{cf(\lambda)}$. Proposition 3.6 implies

$$\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|A) \leq \sup_{\kappa < \tau < \lambda} \operatorname{cof}(NS_{\kappa,\tau}^{[\tau]^{<\theta}}) \leq \sup_{\kappa < \tau < \lambda} \tau^{(\tau^{<\overline{\theta}})} \leq \lambda.$$

Finally, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|A) \geq \lambda$ since $u(\kappa,\rho) < \lambda^{cf(\lambda)}$ for every cardinal ρ with $\kappa \leq \rho < \lambda$.

Our assumptions are sufficient but not necessary. To see this, suppose that GCH holds, $\delta \geq \kappa$ and either $\delta < \lambda = \sigma^+$ and $cf(\sigma) \geq \kappa$, or $\delta < \lambda$ and λ is a limit cardinal with $cf(\lambda) > |\delta|$, or λ is a limit cardinal with $cf(\lambda) < \kappa$. Let $\tau > \lambda$ be a regular cardinal, and P be the notion of forcing for adding τ Cohen reals. For each cardinal $\mu > 0$ and each cardinal $\rho \geq \kappa$, we have $(\mathfrak{d}^{\mu}_{\kappa,\rho})^{V^P} \leq (\mathfrak{d}^{\mu}_{\kappa,\rho})^{V^P}$ by a result of [7]. It follows that in V^P , $\overline{\operatorname{cof}}(NS^{\delta}_{\kappa,\lambda}|A) = \lambda$ for every $A \in (NS^{\delta}_{\kappa,\lambda})^+$.

Proposition 4.2: Let μ be a cardinal such that $\overline{\theta} \leq cf(\mu) < \kappa < \mu \leq \lambda$. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\mu]^{<\theta}}|A) \leq \sup_{\kappa \leq \tau < \mu} \overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\tau]^{<\theta}}|A)$ for all $A \in (NS_{\kappa,\lambda}^{[\mu]^{<\theta}})^+$.

Proof: Fix $A \in (NS_{\kappa,\lambda}^{[\mu]^{<\theta}})^+$. Let $<\mu_{\xi}: \xi < cf(\mu)>$ be a strictly increasing sequence of cardinals greater than κ such that $\mu=\sup_{\xi< cf(\mu)}\mu_{\xi}$. Given $f\colon P_{\overline{\theta}\cdot 3}(\mu)\longrightarrow P_{\kappa}(\lambda)$, set $f_{\xi}=f\upharpoonright P_{\overline{\theta}\cdot 3}(\mu_{\xi})$ for every $\xi< cf(\mu)$. Then

$$\left\{a\in\bigcap_{\xi< c\,f(\mu)}(A\cap C^{\kappa,\lambda}_{f_\xi}):\overline{\theta}\subseteq a\right\}\subseteq A\cap C^{\kappa,\lambda}_f.$$

So we get

$$\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\mu]^{<\theta}}|A) \leq cf(\mu) \cdot (\sup_{\xi < cf(\mu)} \overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\mu_{\xi}]^{<\theta}}|A)).$$

The desired result follows, since $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\mu]^{<\theta}}|A)>cf(\mu)$ by Proposition 2.1.

Next we investigate lower bounds for $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A)$.

PROPOSITION 4.3: Let μ be a cardinal with $\kappa \leq \mu \leq \lambda$, and J be a $[\mu]^{\leq \theta}$ -normal ideal on $P_{\kappa}(\lambda)$. Then

- (i) $cf(\overline{\cot}(J)) < \kappa \text{ or } cf(\overline{\cot}(J)) > \mu^{<\overline{\theta}}$.
- (ii) Assume $\mu^{<\overline{\theta}} = \mu^{\kappa}$. Then $\overline{\cot}(J) > \mu^{<\overline{\theta}}$.

Proof:

- (i) Suppose that $\kappa \leq \rho \leq \mu^{<\overline{\theta}}$, where $\rho = cf(\overline{cof}(J))$. Pick $E \subseteq P_{\overline{\theta} \cdot 3}(\mu)$ with $|E| = \rho$, and let $E = \{e_{\alpha} : \alpha < \rho\}$. Select $X_{\alpha} \subseteq J$ for $\alpha < \rho$ so that
 - (i) $|X_{\alpha}| < \overline{\operatorname{cof}}(J)$.
 - (ii) $X_{\beta} \subseteq X_{\alpha}$ for all $\beta < \alpha$.

(iii) For every $B \in J$, there is $S \in P_{\kappa}(\bigcup_{\alpha < \rho} X_{\alpha})$ with $B \subseteq \cup S$. Given $\alpha < \rho$, set $d_{\alpha} = e_{\alpha} \cup (\overline{\theta} \cdot 3)$ if $\overline{\theta} < \kappa$, and $d_{\alpha} = e_{\alpha} \cup |e_{\alpha}|^{+}$ otherwise. Let $Y_{\alpha} = \{A \cup (P_{\kappa}(\lambda) \setminus \widehat{d}_{\alpha}) : A \in X_{\alpha}\}$, and pick $B_{\alpha} \in J$ so that $B_{\alpha} \not\subseteq \cup T$ for every $T \in P_{\kappa}(Y_{\alpha})$. Now put

$$B = \bigcup_{\alpha < \rho} (B_{\alpha} \cap \{a \in P_{\kappa}(\lambda) : e_{\alpha} \in P_{|a \cap (\overline{\theta} \cdot 3)|}(a)\}).$$

Since $B \in J$, we can find $\alpha < \rho$ and $S \in P_{\kappa}(X_{\alpha})$ so that $B \subseteq \cup S$. Setting $T = \{A \cup (P_{\kappa}(\lambda) \setminus \widehat{d}_{\alpha}) : A \in S\}$, we have $B_{\alpha} \subseteq B \cup (P_{\kappa}(\lambda) \setminus \widehat{d}_{\alpha}) \subseteq \cup T$. This yields the desired contradiction.

(ii) We have $\operatorname{cof}(J) \geq \mathfrak{d}_{\kappa,\lambda}^{\mu^{<\overline{\theta}}} > \mu^{<\overline{\theta}} = \mu^{\kappa}$. From $u(\kappa,\mu^{\kappa}) = \mu^{\kappa}$ we can conclude that $\overline{\operatorname{cof}}(J) > \mu^{\kappa}$.

In particular, if $\delta > \kappa$ and $|\delta|$ is a strong limit cardinal with $cf(|\delta|) < \overline{\theta}$, then $\overline{\cos}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) > 2^{|\delta|}$ for every $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$.

Definition: Given $f: P_{\overline{\theta}.3}(\delta) \longrightarrow P_{\kappa}(\lambda)$ and $E \subseteq \lambda$, $\Gamma_f(E)$ is defined as follows. Set $\rho = \overline{\theta} \cdot \aleph_0$ if $\overline{\theta} \cdot \aleph_0$ is a regular cardinal, and $\rho = (\overline{\theta} \cdot \aleph_0)^+$ otherwise. Define $E_{\alpha} \subseteq \lambda$ for $\alpha < \rho$ by:

- (a) $E_0 = E$.
- (b) $E_{\alpha+1} = E_{\alpha} \cup (\cup f[P_{\overline{\theta}\cdot 3}(E_{\alpha} \cap \delta)]).$
- (c) $E_{\alpha} = \bigcup_{\beta < \alpha} E_{\beta}$ if α is an infinite limit ordinal.

Then let $\Gamma_f(E) = \bigcup_{\alpha < \rho} E_{\alpha}$.

It is simple to see that

$$\Gamma_f(E) = \bigcap \{D: E \subseteq D \subseteq \lambda \text{ and } \forall e \in P_{\overline{\theta} \cdot 3}(D \cap \delta)(f(e) \subseteq D)\}.$$

LEMMA 4.4: Let δ' be an ordinal with $1 \leq \delta' \leq \lambda$, and θ' be a cardinal with $2 \leq \theta' \leq \kappa$. Further, let σ be a cardinal such that $\sigma > \kappa \cdot |\delta|^{<\overline{\theta}}$ and $\Gamma_f(E) \neq \lambda$ for all $E \in P_{\sigma}(\lambda)$ and $f \colon P_{\overline{\theta'} \cdot 3}(\delta') \longrightarrow P_{\kappa}(\lambda)$. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) \geq \sigma$ for every $A \in (NS_{\kappa,\lambda}^{[\delta']^{<\theta'}})^*$.

Proof: Let $A \in (NS_{\kappa,\lambda}^{[\delta']^{<\theta'}})^*$ and $B_{\alpha} \in NS_{\kappa,\lambda}^{[\delta]^{<\theta}} \mid A \text{ for } \alpha < \mu, \text{ where } \mu$ is a cardinal with $0 < \mu < \sigma$. Pick $f \colon P_{\theta' \cdot 3}(\delta') \longrightarrow P_{\kappa}(\lambda)$ with $C_f^{\kappa,\lambda} \subseteq A$, and for $\alpha < \mu$, $g_{\alpha} \colon P_{\overline{\theta} \cdot 3}(\delta) \longrightarrow P_{\kappa}(\lambda)$ with $(B_{\alpha} \cap A) \cap C_{g_{\alpha}}^{\kappa,\lambda} = \emptyset$. Set $E = \kappa \cup \bigcup_{\alpha < \mu} (\cup \operatorname{ran}(g_{\alpha}))$. Since $|E| < \sigma$, we can find $\zeta \in \lambda$ so that $\zeta \notin \Gamma_f(E)$.

Now let $x \in P_{\kappa}(\mu) \setminus \{\emptyset\}$. Define b as follows. First suppose that $\overline{\theta} < \kappa$ and $\overline{\theta'} < \kappa$. Set $\rho = (\overline{\theta} \cdot \aleph_0) \cup (\overline{\theta'} \cdot \aleph_0)$ if $(\overline{\theta} \cdot \aleph_0) \cup (\overline{\theta'} \cdot \aleph_0)$ is a regular cardinal, and $\rho = ((\overline{\theta} \cdot \aleph_0) \cup (\overline{\theta'} \cdot \aleph_0))^+$ otherwise. Define a_{β} for $\beta < \rho$ by:

- (a) $a_0 = (\overline{\theta} \cdot 3) \cup (\overline{\theta'} \cdot 3)$.
- (b) $a_{\beta+1} = a_{\beta} \cup v \cup \omega$, where $v = \bigcup \{f(d) : d \in P_{\overline{\theta'} \cdot 3}(a_{\beta} \cap \delta')\}$ and $w = \bigcup \{g_{\alpha}(e) : \alpha \in x \text{ and } e \in P_{\overline{\theta} \cdot 3}(a_{\beta} \cap \delta)\}.$
- (c) $a_{\beta} = \bigcup_{\xi < \beta} a_{\xi}$ if β is an infinite limit ordinal.

Now let $b = \bigcup_{\beta < \rho} a_{\beta}$. Next suppose that $\overline{\theta} = \kappa$ or $\overline{\theta'} = \kappa$. Define s_{β} and γ_{β} for $\beta < \kappa$ by:

- (i) If $\overline{\theta} < \kappa$, $s_0 = \overline{\theta} \cdot 3$. If $\overline{\theta'} < \kappa$, $s_0 = \overline{\theta'} \cdot 3$. If $\overline{\theta} = \overline{\theta'} = \kappa$, $s_0 = \{0\}$.
- (ii) $\gamma_{\beta} = \bigcup (d_{\beta} \cap \kappa).$
- (iii) $s_{\beta+1} = s_{\beta} \cup (\gamma_{\beta} + 2) \cup y \cup z$, where $y = \bigcup \{f(d) : d \in P_{|s_{\beta} \cap (\overline{\theta'} \cdot 3)|}(d_{\beta} \cap \delta')\}$ and $z = \bigcup \{g_{\alpha}(e) : \alpha \in x \text{ and } e \in P_{|s_{\beta} \cap (\overline{\theta} \cdot 3)|}(s_{\beta} \cap \delta)\}.$
- (iv) $s_{\beta} = \bigcup_{\xi < \beta} s_{\xi}$ if β is an infinite limit ordinal.

Select a regular infinite cardinal $\tau < \kappa$ so that

- (0) $\gamma_{\tau} = \tau$.
- (1) If $\overline{\theta} < \kappa$, then $\overline{\theta} \le \tau$.
- (2) If $\overline{\theta'} < \kappa$, then $\overline{\theta'} \le \tau$.

In any case we have $b \in C_f^{\kappa,\lambda} \cap \bigcap_{\alpha \in x} C_{g_\alpha}^{\kappa,\lambda}$. Moreover, $\zeta \notin b$ since $b \subseteq \Gamma_f(E)$. Hence $P_{\kappa}(\lambda) - \widehat{\{\zeta\}} \not\subseteq \bigcup_{\alpha \in x} B_{\alpha}$.

PROPOSITION 4.5: Let δ' be an ordinal with $1 \leq \delta' \leq \lambda$, and θ' be a cardinal with $2 \leq \theta' \leq \kappa$. Assume that $\lambda > \kappa \cdot |\delta|^{<\overline{\theta}} \cdot |\delta'|^{<\overline{\theta'}}$. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) \geq \lambda$ for every $A \in (NS_{\kappa,\lambda}^{[\delta']^{<\theta'}})^*$.

Proof: The result follows from Lemma 4.4 since $|\Gamma_f(E)| < \lambda$ for all $E \in P_{\kappa}(\lambda)$ and $f: P_{\overline{\theta'} \cdot 3}(\delta') \longrightarrow P_{\kappa}(\lambda)$.

COROLLARY 4.6: Let δ' be an ordinal with $1 \leq \delta' \leq \lambda$, and θ' be a cardinal with $2 \leq \theta' \leq \kappa$. Assume that $\kappa \leq \delta$, $\kappa \leq cf(\lambda) \leq |\delta|^{<\overline{\theta}} < \lambda$ and $|\delta'|^{<\overline{\theta'}} < \lambda$. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) > \lambda$ for every $A \in (NS_{\kappa,\lambda}^{[\delta']^{<\theta'}})$.

Proof: Use Proposition 4.3.

PROPOSITION 4.7: Let θ' be a cardinal with $2 \leq \theta' \leq \kappa$, and σ be the least cardinal τ such that $\tau^{<\overline{\theta'}} \geq \kappa$. Assume that $\kappa < \lambda$ and $|\delta|^{<\overline{\theta}} < \sigma$. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) \geq \sigma$ for every $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta'}})^*$.

Proof: Suppose that there exists a $[\lambda]^{<\theta'}$ -normal ideal on $P_{\kappa}(\lambda)$. Then $\sigma > \kappa$, and $(\nu^{<\overline{\theta'}})^{<\overline{\theta'}} = \nu^{<\overline{\theta'}}$ for every cardinal $\nu \geq \kappa$. Hence for each $f \colon P_{\overline{\theta'} \cdot 3}(\lambda) \longrightarrow$

 $P_{\kappa}(\lambda)$ and each $E \in P_{\sigma}(\lambda) \setminus \{\emptyset\}$, we get $|\Gamma_f(E)| \leq (\kappa \cdot |E|)^{<\overline{\theta'}} < \lambda$. Now apply Lemma 4.4.

In particular, if $\lambda > \kappa \cdot |\delta|^{<\overline{\theta}}$ and $A \in NS_{\kappa,\lambda}^*$, then $\overline{\cot}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) \geq \lambda$. If in addition $\delta \geq \kappa$ and $\kappa \leq cf(\lambda) \leq |\delta|^{<\overline{\theta}}$, then $\overline{\cot}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) > \lambda$ — see the next result.

COROLLARY 4.8: Let θ' be a cardinal with $2 \leq \theta' \leq \kappa$. Assume that $\kappa \leq \delta$, $\kappa \leq cf(\lambda) \leq |\delta|^{<\overline{\theta}} < \lambda$, and $\mu^{<\overline{\theta'}} < \lambda$ for every cardinal $\mu < \lambda$. Then $\overline{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) > \lambda$ for all $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta'}})^*$.

Proof: Use Proposition 4.3. ■

5.
$$\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A)$$

Proposition 5.1: $\overline{\operatorname{cof}}(I_{\kappa,\lambda}) = \lambda$.

Proof: For each $B \in I_{\kappa,\lambda}$, there is $a \in P_{\kappa}(\lambda)$ such that $B \subseteq \bigcup_{\alpha \in a} (P_{\kappa}(\lambda) \setminus \widehat{\{\alpha\}})$. From this we get at once $\overline{\operatorname{cof}}(I_{\kappa,\lambda}) \leq \lambda$. The reverse inequality is immediate from the remark that given fewer than λ many sets in $P_{\kappa}(\lambda)$ their union is a proper subset of λ .

The rest of the section deals with the question of whether there exists A such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) < \lambda$.

Proposition 5.2:

- (i) If $\lambda \leq \kappa^{+\omega}$, then $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) = \lambda$ for every $A \in I_{\kappa,\lambda}^+$.
- (ii) If $|\delta|^{<\overline{\theta}} < \lambda$, then $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) = \lambda$ for every $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^*$.
- (iii) Let σ be the least cardinal τ such that $\tau^{<\overline{\theta}} \geq \lambda$. Then $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) \geq \sigma$ for every $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^*$.

Proof: By Propositions 5.1, 2.2, 4.5 and 4.7. ■

PROPOSITION 5.3: Let σ be a cardinal with $\kappa < \sigma < \lambda$. Setting $\theta = (cf(\sigma))^+$, assume that $\theta < \kappa$, there exists a $[\sigma]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$, and σ is the least cardinal τ such that $\tau^{<\theta} \geq \lambda$. Then $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) = \sigma$ for some $A \in (NS_{\kappa,\lambda}^{[\sigma]^{<\theta}})^*$.

Proof: Pick a surjection $j: P_{\theta}(\sigma) \longrightarrow P_2(\lambda)$. Then given $\gamma \in \lambda$, we have

$$C_j^{\kappa,\lambda}\cap\widehat{\theta}\cap\bigcap_{\alpha\in e}\widehat{\{\alpha\}}\subseteq\widehat{\{\gamma\}}$$

for any $e \in P_{\theta}(\sigma)$ such that $j(e) = \{\gamma\}$. Consequently, $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|C_j^{\kappa,\lambda}) \leq \sigma$. The reverse inequality holds by Proposition 5.2 (iii).

If $\lambda = \kappa$, then by Proposition 2.1, $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) = \lambda$ for all A. Now suppose $\lambda > \kappa$. If $u(\kappa,\tau) < \lambda$ for every cardinal τ with $\kappa \leq \tau < \lambda$ (under GCH, this assumption is equivalent to: λ is either a limit cardinal or the successor of a cardinal of cofinality greater than or equal to κ), then by Proposition 2.1, $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) = \lambda$ for all A. On the other hand, if there exist two cardinals $\tau < \kappa$ and $\rho < \lambda$ such that $\rho^{<\tau} \geq \lambda$ and $\mu^{<\tau} < \kappa$ for every cardinal $\mu < \kappa$ (under GCH, this means that λ is the successor of a cardinal σ of cofinality less than κ and κ is not the successor of a cardinal of cofinality less than $cf(\sigma)$, then by Proposition 5.3, $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) < \lambda$ for some A. We will see that the same conclusion follows from the hypothesis that λ is the successor of a cardinal σ such that $cf(\sigma) < \kappa$ and \Box_{σ}^* holds. On the other hand, the conclusion fails if $\lambda = \sigma^+$, $\kappa = \nu^+$, $\sigma^\nu = \sigma$, $\nu^{< cf(\nu)} = \nu$ and $\lambda \longrightarrow [\kappa]_{\sigma,<\kappa}^2$. Thus, the assertion " $\overline{\operatorname{cof}}(I_{\omega_1,\omega_{\omega+1}}|A) < \omega_{\omega+1}$ for some A" is consistent with ZFC, but so is (relative to a large cardinal) its negation. First, we reformulate our problem.

Definition: For two cardinals ρ and σ such that $2 \leq \rho \leq \kappa \leq \sigma$, $\mathcal{A}_{\kappa,\lambda}^{\sigma,\rho}$ asserts the existence of $y_{\alpha} \in P_{\rho}(\sigma)$ for $\alpha < \lambda$ such that $|\{\alpha < \lambda : y_{\alpha} \subseteq d\}| < \kappa$ for all $d \in P_{\kappa}(\sigma)$.

LEMMA 5.4: Let ρ and σ be two cardinals such that $2 \leq \rho \leq \kappa \leq \sigma$, and let $y_{\alpha} \in P_{\rho}(\sigma)$ for $\alpha < \lambda$ be such that $|\{\alpha < \lambda : y_{\alpha} \subseteq d\}| < \kappa$ for every $d \in P_{\kappa}(\sigma)$. Then $|\{\alpha < \lambda : y_{\alpha} \subseteq x\}| \leq \kappa$ for every $x \in P_{\kappa+}(\sigma)$.

Proof: Suppose, to get a contradiction, that there is $e \subseteq \lambda$ such that $|e| = \kappa^+$ and $|\bigcup_{\alpha \in e} y_{\alpha}| < \kappa^+$. Then $|\bigcup_{\alpha \in e} y_{\alpha}| = \kappa$. Select a bijection $j : \kappa \longrightarrow \bigcup_{\alpha \in e} y_{\alpha}$. For $\alpha \in e$, let ξ_{α} be the least $\beta < \kappa$ such that $y_{\alpha} \subseteq j[\beta]$. Pick $e' \subseteq e$ and $\xi < \kappa$ so that $|e'| = \kappa^+$ and $\xi_{\alpha} = \xi$ for all $\alpha \in e'$. Then $|\bigcup_{\alpha \in e'} y_{\alpha}| < \kappa$, a contradiction.

PROPOSITION 5.5: Let ρ and σ be two cardinals such that $2 \leq \rho \leq \kappa < \sigma$. Then $\mathcal{A}_{\kappa,\lambda}^{\sigma,\rho}$ implies $\mathcal{A}_{\kappa+\lambda}^{\sigma,\rho}$.

Proof: This is an immediate consequence of Lemma 5.4.

Definition: Given a cardinal $\sigma \geq \kappa$, $\mathcal{A}^{\sigma}_{\kappa,\lambda}$ stands for $\mathcal{A}^{\sigma,\kappa}_{\kappa,\lambda}$.

Proposition 5.6:

- (i) Let σ be a cardinal with $\kappa \leq \sigma$. Assume that $\mathcal{A}_{\kappa,\lambda}^{\sigma}$ holds, $\delta < \lambda$ and there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$. Then there is $D \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$ such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|D) \leq \sigma$.
- (ii) Let σ be a cardinal with $\kappa \leq \sigma$, and ρ be a regular infinite cardinal with $\rho < \kappa$. Assume that $\mathcal{A}_{\kappa,\lambda}^{\sigma,\rho}$ holds and there exists a $[\lambda]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$. Then there is $D \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^+$ such that $\overline{\cot}(I_{\kappa,\lambda}|D) \leq \sigma$.

Proof:

(i) The result is trivial in case $\sigma \geq \lambda$. Now assume $\sigma < \lambda$. Select $y_{\alpha} \in P_{\kappa}(\sigma)$ for $\alpha \in \lambda \setminus \delta$ so that $|\{\alpha \in \lambda \setminus \delta : y_{\alpha} \subseteq d\}| < \kappa$ for every $d \in P_{\kappa}(\sigma)$. Let D be the set of all $a \in P_{\kappa}(\lambda)$ such that $\{\alpha \in \lambda \setminus \delta : y_{\alpha} \subseteq a\} \subseteq a$. Then $D \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$, since given $f: P_{\overline{\theta},3}(\delta) \longrightarrow P_{\kappa}(\lambda)$, we have

$$b\bigcup\{\alpha\in\lambda\setminus\delta:y_\alpha\subseteq b\}\in D\cap C^{\kappa,\lambda}_f$$

for any $b \in C_f^{\kappa,\lambda}$. Furthermore, $\overline{\cot}(I_{\kappa,\lambda}|D) \leq \sigma$ since given $c \in P_{\kappa}(\lambda)$, we have $D \cap \widehat{c'} \subseteq \widehat{c}$, where $c' = (c \cap \sigma) \cup \bigcup_{\alpha \in c \setminus \sigma} y_{\alpha}$.

- (ii) Let us assume that $\sigma < \lambda$, since otherwise the result is trivial. Select $y_{\alpha} \in P_{\rho}(\sigma)$ for $\alpha < \lambda$ so that $|\{\alpha < \lambda : y_{\alpha} \subseteq d\}| < \kappa$ for every $d \in P_{\kappa}(\sigma)$. Let D be the set of all $a \in P_{\kappa}(\lambda)$ such that $\{\alpha \in \lambda : y_{\alpha} \subseteq a\} \subseteq a$. To prove that $D \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^+$, fix $f: P_{\overline{\theta}\cdot 3}(\lambda) \longrightarrow P_{\kappa}(\lambda)$. First suppose $\overline{\theta} < \kappa$. Pick a regular cardinal χ so that $\rho \cdot \overline{\theta} \leq \chi < \kappa$. Now define a_{β} for $\beta \leq \chi$ by:
 - (a) $a_0 = \overline{\theta} \cdot 3$.
 - (b) $a_{\beta+1} = a_{\beta} \bigcup \{\alpha \in \lambda : y_{\alpha} \subseteq a\} \cup \bigcup_{e \in P_{\overline{\theta},3}(a_{\beta})} f(e).$
 - (c) $a_{\beta} = \bigcup_{\gamma < \beta} a_{\gamma}$ if β is an infinite limit ordinal.

Then we have $a_{\chi} \in D \cap C_f^{\kappa,\lambda}$. Next suppose $\overline{\theta} = \kappa$. Define b_{β} and γ_{β} for $\beta < \kappa$ by:

- (0) $b_0 = \omega$.
- (1) $\gamma_{\beta} = \cup (b_{\beta} \cap \kappa)$.
- (2) $b_{\beta+1} = b_{\beta} \cup (\gamma_{\beta} + 2) \cup |b_{\beta}|^+ \cup \{\alpha \in \lambda : y_{\alpha} \subseteq b_{\beta}\} \cup \bigcup_{e \subseteq b_{\beta}} f(e).$
- (3) $b_{\beta} = \bigcup_{\xi < \beta} b_{\xi}$ if β is an infinite limit ordinal.

Now select a regular cardinal τ so that $\rho < \tau < \kappa$ and $\gamma_{\tau} = \tau$. Since $|b_{\tau}| = \tau = b_{\tau} \cap \tau$, we get $b_{\tau} \in D \cap C_f^{\kappa, \lambda}$.

Finally, to see that $\overline{\cot}(I_{\kappa,\lambda}|D) \leq \sigma$, it suffices to observe that for any $c \in P_{\kappa}(\lambda)$, $D \cap \widehat{c'} \subseteq \widehat{c}$, where $c' = \bigcup_{\alpha \in c} y_{\alpha}$.

PROPOSITION 5.7: Given a cardinal $\sigma > \kappa$, the following are equivalent:

- (i) $\mathcal{A}^{\sigma}_{\kappa,\lambda}$ holds.
- (ii) $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) \leq \sigma \text{ for some } A \in I_{\kappa,\lambda}^+.$
- (iii) There is an ideal J on $P_{\kappa}(\lambda)$ such that $\overline{\operatorname{cof}}(J) \leq \sigma$.

Proof:

- (i) \rightarrow (ii) By Proposition 5.6 (i).
- (ii) \rightarrow (iii) Trivial.
- (iii) \to (i) Let J be an ideal on $P_{\kappa}(\lambda)$ such that $\overline{\operatorname{cof}}(J) \leq \sigma$. Select $D_{\beta} \in J^*$ for $\beta < \sigma$ so that for every $D \in J^*$, there is $x \in P_{\kappa}(\sigma) \setminus \{\emptyset\}$ with $\bigcap_{\beta \in x} D_{\beta} \subseteq D$. For $\alpha \in \lambda$, pick $y_{\alpha} \in P_{\kappa}(\sigma) \setminus \{\emptyset\}$ so that $\bigcap_{\beta \in y_{\alpha}} D_{\beta} \subseteq \widehat{\{\alpha\}}$. Now let $d \in P_{\kappa}(\sigma) \setminus \{\emptyset\}$. Then $\{\alpha < \lambda : y_{\alpha} \subseteq d\} \subseteq c$ for any $c \in \bigcap_{\beta \in d} D_{\beta}$, hence $|\{\alpha < \lambda : y_{\alpha} \subseteq d\}| < \kappa$.

COROLLARY 5.8: Let σ be a cardinal such that $\kappa \leq \sigma \leq \lambda$ and $\mathcal{A}_{\kappa,\lambda}^{\sigma}$ holds. Then $u(\kappa,\sigma) = u(\kappa,\lambda)$.

Proof: By Proposition 5.7, there is $A \in I_{\kappa,\lambda}^+$ such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) \leq \sigma$. Then we get

$$u(\kappa,\lambda) = \operatorname{cof}(I_{\kappa,\lambda}|A) \le u(\kappa,\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A)) \le u(\kappa,\sigma) \le u(\kappa,\lambda).$$

We now consider the question of whether there exists $D \in NS_{\kappa,\lambda}^+$ such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|D) < \lambda$. Proposition 5.6 (ii) gives a positive answer in some cases, but it does not apply if, e.g., $\kappa = \omega_1$ and $\lambda = \omega_{\omega+1}$. To deal with such cases we introduce a (stronger) variant of $\mathcal{A}_{\kappa,\lambda}^{\sigma}$.

Definition: For two cardinals ρ and σ such that $2 \leq \rho \leq \kappa \leq \sigma$, $\mathcal{B}_{\kappa,\lambda}^{\sigma,\rho}$ asserts the existence of $y_{\alpha} \in P_{\rho}(\sigma)$ for $\alpha < \lambda$ such that for every nonempty $e \in P_{\kappa^{+}}(\lambda)$, there is a $< \kappa$ -to-one function in $\prod_{\alpha \in e} y_{\alpha}$.

LEMMA 5.9: Let ρ and σ be two cardinals such that $2 \leq \rho \leq \kappa \leq \sigma$, and let $y_{\alpha} \in P_{\rho}(\sigma)$ for $\alpha < \lambda$ be such that for every nonempty $e \in P_{\kappa^{+}}(\lambda)$, there is $a < \kappa$ -to-one function in $\prod_{\alpha \in e} y_{\alpha}$. Then $|\{\alpha < \lambda : y_{\alpha} \subseteq d\}| < \kappa$ for every $d \in P_{\kappa}(\sigma)$.

Proof: We have to show that $|\bigcup_{\alpha\in e} y_{\alpha}| = \kappa$ for every $e \subseteq \lambda$ with $|e| = \kappa$. Given such an e, select a $< \kappa$ -to-one function $h \in \prod_{\alpha\in e} y_{\alpha}$. Define by induction $\xi_{\beta} \in e$ for $\beta < \kappa$ so that $h(\xi_{\beta}) \neq h(\xi_{\gamma})$ for all $\gamma < \beta$. Then clearly $|\bigcup_{\beta < \kappa} y_{\xi_{\beta}}| = \kappa$.

PROPOSITION 5.10: Let ρ and σ be two cardinals such that $2 \leq \rho \leq \kappa \leq \sigma$. Then $\mathcal{B}_{\kappa,\lambda}^{\sigma,\rho}$ implies $\mathcal{A}_{\kappa,\lambda}^{\sigma,\rho}$.

Proof: The result follows immediately from Lemma 5.9.

Definition: Given a cardinal $\sigma \geq \kappa$, $\mathcal{B}_{\kappa,\lambda}^{\sigma}$ stands for $\mathcal{B}_{\kappa,\lambda}^{\sigma,\kappa}$.

PROPOSITION 5.11: Let σ be a cardinal such that $\sigma \geq \kappa$ and $\mathcal{B}_{\kappa,\lambda}^{\sigma}$ holds. Assume that there exists a $[\lambda]^{\leq \theta}$ -normal ideal on $P_{\kappa}(\lambda)$. Then there is $D \in (NS_{\kappa,\lambda}^{[\lambda]^{\leq \theta}})^+$ such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|D) \leq \sigma$.

Proof: Let us assume that $\sigma < \lambda$, since otherwise the result is trivial. Select $y_{\alpha} \in P_{\kappa}(\sigma)$ for $\alpha < \lambda$ so that for every nonempty $e \in P_{\kappa^{+}}(\lambda)$, there is a $< \kappa$ -to-one function in $\prod_{\alpha \in e} y_{\alpha}$. Let D be the set of all $a \in P_{\kappa}(\lambda)$ such that $\{\alpha < \lambda : y_{\alpha} \subseteq a\} \subseteq a$. To prove that $D \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^{+}$, fix $f: P_{\overline{\theta},3}(\lambda) \longrightarrow P_{\kappa}(\lambda)$. Define e_{β} for $\beta < \kappa$ by:

- (a) $e_0 = \kappa$.
- (b) $e_{\beta+1} = e_{\beta} \cup \{\alpha < \lambda : y_{\alpha} \subseteq e_{\beta}\} \cup \bigcup_{b \in P_{\overline{a}, \alpha}(e_{\beta})} f(b).$
- (c) $e_{\beta} = \bigcup_{\gamma < \beta} e_{\gamma}$ if β is an infinite limit ordinal.

Now set $E = \bigcup_{\beta < \kappa} e_{\beta}$. Then $|E| = \kappa$ and $\{\alpha < \lambda : y_{\alpha} \subseteq E\} \subseteq E \subseteq \lambda$. Moreover, $f(b) \subseteq E$ for every $b \in P_{\overline{\theta}.3}(E)$. Select a $< \kappa$ -to-one $h \in \prod_{\alpha \in E} y_{\alpha}$, and let H be the set of all $a \in P_{\kappa}(\lambda)$ such that $h^{-1}(\{\xi\}) \subseteq a$ for every $\xi \in a \cap \operatorname{ran}(h)$. Clearly, $H \in (NS_{\kappa,\lambda}^{[\sigma]^{<\theta}})^*$. Pick $a \in \widehat{\{0\}} \cap H \cap C_f^{\kappa,\lambda}$. It is simple to see that $a \cap E \in C_f^{\kappa,\lambda}$. Now suppose that $\alpha \in \lambda$ is such that $y_{\alpha} \subseteq a \cap E$. Then we get $\alpha \in E$ and $h(\alpha) \in a \cap \operatorname{ran}(h)$. Since $a \in H$, we can conclude that $\alpha \in a$. Thus $a \cap E \in D$, hence $D \cap C_f^{\kappa,\lambda} \neq \emptyset$. Finally, if $c \in P_{\kappa}(\lambda)$, then $D \cap \widehat{c'} \subseteq \widehat{c}$, where $c' = \bigcup_{\alpha \in c} y_{\alpha}$. This yields $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|D) \leq \sigma$.

6. $\mathcal{A}_{\kappa,\lambda}^{\sigma}$ and $\mathcal{B}_{\kappa,\lambda}^{\sigma}$

This section is concerned with the truth of $\mathcal{A}_{\kappa,\lambda}^{\sigma}$ and $\mathcal{B}_{\kappa,\lambda}^{\sigma}$.

Definition: Given a set A, we set $[A]^2 = \{a \subseteq A : |a| = 2\}.$

Definition: Given two cardinals χ and τ , $\lambda \longrightarrow [\kappa]_{\chi, < \tau}^2$ means that for every $F: [\lambda]^2 \longrightarrow \chi$, there is $A \subseteq \lambda$ such that $|A| = \kappa$ and $|\{F(a) : a \in [A]^2\}| < \tau$.

PROPOSITION 6.1: Let μ be a singular limit cardinal such that $cf(\mu) < \kappa \le 2^{<\mu}$ and $\kappa \longrightarrow [\kappa]_{cf(\mu), < cf(\mu)}^2$. Then setting $\sigma = 2^{<\mu}$, $\rho = (cf(\mu))^+$ and $\lambda = 2^{\mu}$, $\mathcal{A}_{\kappa,\lambda}^{\sigma,\rho}$ holds.

Proof: Select a strictly increasing sequence $<\mu_{\gamma}:\gamma< cf(\mu)>$ of infinite cardinals so that $\mu=\sup_{\gamma< cf(\mu)}\mu_{\gamma}$. Let Q be the set of all $X\subseteq \mu$ such that $\{\mu_{\gamma}:\gamma< cf(\mu)\}\subseteq X$. Pick a bijection $j\colon\bigcup_{\gamma< cf(\mu)}P(\mu_{\gamma})\longrightarrow \sigma$. For $X\in Q$, let $y_X=\{j(X\cap\mu_{\gamma}):\gamma< cf(\mu)\}$. Notice that $y_X\subseteq \sigma$ and $|y_X|=cf(\mu)$. Now fix $\mathfrak{X}\subseteq Q$ with $|\mathfrak{X}|=\kappa$. Define $F\colon [\mathfrak{X}]^2\longrightarrow cf(\mu)$ by: $F(\{X,X'\})=$ the least $\gamma< cf(\mu)$ such that $X\cap\mu_{\gamma}\neq X'\cap\mu_{\gamma}$. Select $\mathcal{Y}\subseteq \mathfrak{X}$ and $\eta< cf(\mu)$ so that $|\mathcal{Y}|=\kappa$ and $F(w)\leq \eta$ for all $w\in [\mathcal{Y}]^2$. Define $k\colon \mathcal{Y}\longrightarrow \bigcup_{X\in\mathcal{Y}}y_X$ by $k(X)=j(X\cap\mu_{\eta})$. Then k is one-to-one, hence $|\bigcup_{X\in\mathfrak{X}}y_X|=\kappa$. Since $|Q|=\lambda$, we can conclude that $\mathcal{A}_{\kappa,\lambda}^{\sigma,\rho}$ holds.

The following is due to Shelah (see Theorem 6.3 in Chapter II of [8]).

PROPOSITION 6.2: Let ρ and σ be two cardinals such that $cf(\sigma) < \rho \le \kappa < \sigma < \lambda$. Assume that $u(\sigma^+, \lambda) < \text{cov}(\sigma, \sigma, \rho, 2)$. Then $\mathcal{B}_{\kappa, \lambda}^{\sigma, \rho}$ holds.

Proof: Select $B \in I_{\sigma^+,\lambda}^+$ so that $|B| = u(\sigma^+,\lambda)$. For $b \in B$, let $b = \bigcup_{\gamma < cf(\sigma)} d_\gamma^b$, where $|d_\gamma^b| < \sigma$ for every $\gamma < cf(\sigma)$. Pick $y_\alpha \in P_\rho(\sigma)$ for $\alpha < \lambda$ so that $y_\alpha \not\subseteq \bigcup_{\zeta \in \alpha \cap d_\gamma^b} y_\zeta$ for every $b \in B$ and every $\gamma < cf(\sigma)$. Now let $e \in P_{\sigma^+}(\lambda) \setminus \{\emptyset\}$. Select $b \in B$ so that $e \subseteq b$. Define $g : e \longrightarrow cf(\sigma)$ by: $g(\alpha) =$ the least $\gamma < cf(\sigma)$ such that $\alpha \in d_\gamma^b$. Define $h \in \prod_{\alpha \in e} y_\alpha$ so that $h(\alpha) \notin \bigcup_{\zeta \in \alpha \cap d_{g(\alpha)}^b} y_\zeta$ for $\alpha \in e$. Given $u \subseteq e$ with $|u| = (cf(\sigma))^+$, select $v \subseteq u$ so that $|v| = (cf(\sigma))^+$ and g is constant on v. Then h is one-to-one on v and therefore not constant on u. Thus h is $< (cf(\sigma))^+$ -to-one.

COROLLARY 6.3: Let ρ and σ be two cardinals such that (a) $cf(\sigma) < cf(\rho)$, (b) $\rho \le \kappa$, (c) $\kappa \cdot 2^{<\rho} < \sigma$, (d) $\sigma^+ < \sigma^{<\rho}$, and (e) $u(\rho, \nu) < \sigma$ for every cardinal ν with $\rho \le \nu < \sigma$. Then $\mathcal{B}_{\kappa, \sigma^+}^{\sigma, \rho}$ holds.

Proof: It is simple to see that $\sigma^{<\rho} = 2^{<\rho} \cdot u(\rho, \sigma)$ and

$$\sigma < u(\rho, \sigma) = \operatorname{cov}(\sigma, \sigma, \rho, 2) \cdot \sup_{\rho \le \nu < \sigma} u(\rho, \nu).$$

So we have

$$cov(\sigma, \sigma, \rho, 2) = \sigma^{<\rho} > \sigma^+ = u(\sigma^+, \sigma^+).$$

In particular, if $2^{\aleph_0} < \aleph_{\omega}$ and $\aleph_{\omega+1} < \aleph_{\omega}^{\aleph_0}$, then $\mathcal{B}_{\omega_n,\omega_{\omega+1}}^{\omega_{\omega}}$ holds for all n with $0 < n < \omega$.

By work of Todorcevic [12] and of Cummings, Foreman and Magidor [1], if σ is a singular infinite cardinal, and \Box_{σ}^* holds (or there is a very good scale on σ), then one can find $y_{\alpha} \subseteq \sigma$ for $\alpha < \sigma^+$ so that (a) for every $\alpha < \sigma^+$, $\cup y_{\alpha} = \sigma$ and o.t. $(y_{\alpha}) = cf(\sigma)$, and (b) given $\beta < \sigma^+$, there is $g: \beta \longrightarrow \sigma$ such that

$$(y_{\alpha} \setminus g(\alpha)) \cap (y_{\alpha'} \setminus g(\alpha')) = \emptyset$$

for any $\alpha, \alpha' \in \beta$ with $\alpha \neq \alpha'$. As an immediate consequence we get:

PROPOSITION 6.4: Let σ be a cardinal such that $cf(\sigma) < \kappa < \sigma$ and \square_{σ}^* holds. Then $\mathcal{B}_{\kappa,\sigma^+}^{\sigma,(cf(\sigma))^+}$ holds.

The rest of the section is devoted to the proof of the result of Todorcevic [13] that $\omega_{\omega+1} \longrightarrow [\omega_1]^2_{\omega_{\omega},<\omega_1}$ implies the failure of $\mathcal{A}^{\omega_{\omega}}_{\omega_1,\omega_{\omega+1}}$. For the consistency of $\omega_{\omega+1} \longrightarrow [\omega_1]^2_{\omega_{\omega},<\omega_1}$ see [6].

LEMMA 6.5: Let τ be a cardinal such that $\kappa \leq \tau < \lambda$ and $\lambda \longrightarrow [\kappa]^2_{\tau, < \kappa}$, and let $C \subseteq P(\tau)$ with $|C| = \lambda$. Then there is $b \in P_{\kappa}(\tau)$ such that $|\{c \cap b : c \in C\}| \geq \kappa$.

Proof: Select a bijection $j: \lambda \longrightarrow C$. Define $F: [\lambda]^2 \longrightarrow \tau$ so that $F(\{\alpha, \beta\}) \in j(\alpha)\Delta j(\beta)$. Pick $e \subseteq \lambda$ so that $|e| = \kappa$ and $|\{F(x) : x \in [e]^2\}| < \kappa$. Then $b = \{F(x) : x \in [e]^2\}$ is as desired.

LEMMA 6.6: Let ν and σ be two cardinals such that $\omega \leq \nu < \kappa < \sigma < \lambda$ and $\mathcal{A}_{\kappa,\lambda}^{\sigma,\nu^+}$ holds. Then there is $C \subseteq \{c \subseteq \sigma^{<\nu} : |c| = cf(\nu)\}$ such that $|C| = \lambda$ and $|\{c \in C : |c \cap b| = cf(\nu)\}| < \kappa$ for every $b \in P_{\kappa}(\sigma^{<\nu})$ (and hence $\mathcal{A}_{\kappa,\lambda}^{\sigma^{<\nu},(cf(\nu))^+}$ holds).

Proof: Since $\mathcal{A}_{\kappa,\lambda}^{\sigma,\nu^+}$ holds, there is $A\subseteq P_{\nu^+}(\sigma\setminus\kappa)$ such that $|A|=\lambda$ and $|\cup x|=\kappa$ for every $x\subseteq A$ with $|x|=\kappa$. Fix a strictly increasing sequence $<\eta_\xi:\xi< cf(\nu)>$ of ordinals with $\sup_{\xi< cf(\nu)}\eta_\xi=\nu$. For $a\in A$, select a bijection $j_a\colon\nu\longrightarrow a\cup\nu$ and put $\widetilde a=\{j_a\upharpoonright\nu_\xi:\xi< cf(\nu)\}$. Clearly, $B=\{\widetilde a:a\in A\}$ has size λ . Now let $d\in P_\kappa(\bigcup_{\xi< cf(\nu)}\mathcal F_\xi)$, where $\mathcal F_\xi$ is the set of all functions from ν_ξ to σ . Set $z=\bigcup_{t\in a} \mathrm{ran}(t)$. Then $z\in P_\kappa(\sigma)$. Moreover, for each $a\in A$, $|\widetilde a\cap d|=cf(\nu)$ implies that $a\subseteq z$. Hence $|\{b\in B:|b\cap d|=cf(\nu)\}|<\kappa$. The desired conclusion easily follows.

PROPOSITION 6.7: Let ν and σ be two cardinals such that (a) $\omega \leq \nu < \kappa < \sigma$, (b) $\sigma^{<\nu} < \lambda$, (c) $\mu^{< cf(\nu)} < \kappa$ for every cardinal $\mu < \kappa$ and (d) $\lambda \longrightarrow [\kappa]_{\sigma^{<\nu},<\kappa}^2$. Then $\mathcal{A}_{\kappa,\lambda}^{\sigma,\nu^+}$ does not hold.

Proof: By Lemmas 6.5 and 6.6.

COROLLARY 6.8: Let σ be a cardinal such that $\omega_1 \leq \sigma < \lambda$ and $\lambda \longrightarrow [\omega_1]_{\sigma, <\omega_1}^2$. Then $\mathcal{A}_{\omega_1, \lambda}^{\sigma}$ does not hold.

7. $I_{\kappa,\lambda}|A$

In this section we deal with the question of whether for $\delta \geq \kappa$, there is A such that $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} = I_{\kappa,\lambda}|A$, or even $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A = I_{\kappa,\lambda}|A$. Our key tool for getting positive results is the following abstract version of a result of Baumgartner (Theorem 2.3 in [4]).

LEMMA 7.1: Let I and J be two ideals on $P_{\kappa}(\lambda)$ such that $I \subseteq J$. Assume that for any $\mathcal{B} \subseteq J$ with $|\mathcal{B}| = \overline{\operatorname{cof}}(J)$, there is $D \in J^+$ such that $D \cap B \in I$ for every $B \in \mathcal{B}$. Then there is $A \in J^+$ such that J|A = I|A.

Proof: Select $\mathcal{B} \subseteq J$ so that $|\mathcal{B}| = \operatorname{cof}(J)$ and for every $C \in J$, there is $x \in P_{\kappa}(\mathcal{B})$ with $C \subseteq \cup x$. Now let $A \in J^+$ be such that $A \cap B \in I$ for all $B \in \mathcal{B}$. Given $C \in J \cap P(A)$, select $x \in P_{\kappa}(\mathcal{B})$ so that $C \subseteq \cup x$. Then $C \subseteq A \cap (\cup x)$, and since $A \cap (\cup x)$ belongs to I, so does C. Hence $I^+ \cap P(A) \subseteq J^+$.

PROPOSITION 7.2: Assume $\delta \geq \kappa$, and let J be an ideal on $P_{\kappa}(\lambda)$ such that $\overline{\operatorname{cof}}(J) \leq |\delta|^{<\overline{\theta}}$ and $P_{\kappa}(\lambda) \notin \nabla^{[\delta]^{<\theta}} J$. Then there is $A \in (\nabla^{[\delta]^{<\theta}} J)^*$ such that $J|A = I_{\kappa,\lambda}|A$.

Proof: If $B_e \in J$ for $e \in P_{\overline{\theta}}(\delta)$, then $A \cap B_e \in I_{\kappa,\lambda}$ for all $e \in P_{\overline{\theta}}(\delta)$, where $A = P_{\kappa}(\lambda) - (\nabla_{d \in P_{\overline{\theta}}(\delta)} B_d)$. So the desired assertion can be inferred from Lemma 7.1.

COROLLARY 7.3: Let ζ be an ordinal with $\kappa \leq \zeta \leq \delta$, and η be a cardinal with $2 \leq \eta \leq \theta$. Assume that there exists $C \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^*$ such that $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\zeta]^{<\eta}}|C) \leq |\delta|^{<\overline{\theta}}$. Then $NS_{\kappa,\lambda}^{[\zeta]^{<\eta}}|A = I_{\kappa,\lambda}|A$ for some $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^*$.

Proof: Set $J = NS_{\kappa}^{[\zeta]^{\leq \eta}}|C$. We have

$$\nabla^{[\delta]^{<\theta}} J \subseteq \nabla^{[\delta]^{<\theta}} (NS_{\kappa,\lambda}^{[\delta]^{<\theta}} | C) = \nabla^{[\delta]^{<\theta}} NS_{\kappa,\lambda}^{[\delta]^{<\theta}} = NS_{\kappa,\lambda}^{[\delta]^{<\theta}}.$$

Hence, by Proposition 7.2, there is $D \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^*$ such that $J|D = I_{\kappa,\lambda}|D$. Now setting $A = C \cap D$, we get

$$NS_{\kappa,\lambda}^{[\zeta]^{\leq \eta}}|A=(J|D)|C=(I_{\kappa,\lambda}|D)|C=I_{\kappa,\lambda}|A.$$

COROLLARY 7.4: Assume that $\delta \geq \kappa$ and $\lambda^{(|\delta|^{<\overline{\theta}})} = \lambda^{<\overline{\theta}}$. Then $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A = I_{\kappa,\lambda}|A$ for some $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^*$.

 $\begin{array}{ll} \textit{Proof:} & \text{The result follows immediately from Corollary 7.3 since } \overline{\cot}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) \leq \\ \cot(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) \leq \lambda^{(|\delta|^{<\overline{\theta}})}. & \blacksquare \end{array}$

COROLLARY 7.5: Assume that $\delta \geq \kappa$ and J is a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$ with $\overline{\operatorname{cof}}(J) \leq |\delta|^{<\overline{\theta}}$. Then $J = I_{\kappa,\lambda}|A$ for some $A \in I_{\kappa,\lambda}^+$.

Proof: This is an immediate consequence of Proposition 7.2.

Suppose $\delta \geq \kappa$. If there is $A \in I_{\kappa,\lambda}^+$ such that $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} = I_{\kappa,\lambda}|A$, then by a result of [7], $|\delta|^{<\overline{\theta}} \geq \lambda$. From this and Corollary 7.5 we can conclude that $\overline{\mathrm{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) \leq |\delta|^{<\overline{\theta}}$ if and only if $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} = I_{\kappa,\lambda}|A$ for some A.

PROPOSITION 7.6: Assume that λ is a strong limit cardinal and $\overline{\theta} \leq cf(\lambda) < \kappa$. Then $NS_{\kappa,\lambda}^{[\lambda]^{<\theta}} = I_{\kappa,\lambda}|A$ for some $A \in I_{\kappa,\lambda}^+$.

Proof: By Proposition 3.6 and Corollary 7.5. ■

Corollary 7.5 can also be used to obtain a lower bound for $\overline{\mathrm{cof}}(NS_{\kappa,\lambda})$.

Proposition 7.7:

- (i) Let σ be the least cardinal τ such that $\tau^{<\overline{\theta}} \geq \lambda$. Assume $\delta \geq \sigma$. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) \geq \sigma$.
- (ii) Assume that $cf(\lambda) \geq \kappa$ and $\mu^{<\overline{\theta}} < \lambda$ for every cardinal $\mu < \lambda$. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}) > \lambda^{<\overline{\theta}}$.

Proof:

- (i) Suppose otherwise. Then by Corollary 7.5, there exists $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^*$ such that $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} = I_{\kappa,\lambda}|A$. Now Proposition 5.2 (iii) tells us that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) \geq \sigma$, which is a contradiction.
- (ii) Suppose otherwise. Then by Corollary 7.5, there is $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^*$ such that $NS_{\kappa,\lambda}^{[\lambda]^{<\theta}} = I_{\kappa,\lambda}|A$. Now Proposition 5.2 (iii) says that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) = \lambda$, contradicting Proposition 4.3.

In particular, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}) \geq \lambda$. Moreover, this inequality is strict in case $cf(\lambda) \geq \kappa$.

If $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A = I_{\kappa,\lambda}|A$, then clearly $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) \leq \lambda$. Let us next discuss the problem whether for $\delta \geq \kappa$, there is A such that $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) < \lambda$.

LEMMA 7.8: Let σ be a cardinal with $\kappa \leq \sigma < \lambda$, ζ be an ordinal with $\delta \leq \zeta \leq \lambda$, and η be a cardinal with $\theta \leq \eta \leq \kappa$. Assume that (a) $\delta \geq \kappa$, (b) there is $D \in (NS_{\kappa,\lambda}^{[\zeta]^{<\eta}})^*$ such that $\overline{\cot}(I_{\kappa,\lambda}|D) \leq \sigma$, and (c) there is $C \in (NS_{\kappa,\lambda}^{[\zeta]^{<\eta}})^*$ such that $\overline{\cot}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|C) \leq |\zeta|^{<\overline{\eta}}$. Then there is $B \in (NS_{\kappa,\lambda}^{[\zeta]^{<\eta}})^*$ such that $\overline{\cot}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) \leq \sigma$.

Proof: We can apply Corollary 7.3 and obtain $A \in (NS_{\kappa,\lambda}^{[\zeta]^{\leq \eta}})^*$ such that $NS_{\kappa,\lambda}^{[\delta]^{\leq \theta}}|A = I_{\kappa,\lambda}|A$. Setting $B = D \cap A$, we get $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{\leq \theta}}|B) \leq \overline{\operatorname{cof}}(I_{\kappa,\lambda}|D) \leq \sigma$.

LEMMA 7.9: Assume that $\delta \geq \kappa$, $\lambda = \sigma^+$ and $|\delta|^{<\overline{\theta}} \leq \sigma$. Then there is $A \in NS_{\kappa,\lambda}^*$ such that for every $B \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+ \cap P(A)$, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) \leq \overline{\operatorname{cof}}(I_{\kappa,\lambda}|B) \cdot \overline{\operatorname{cof}}(NS_{\kappa,\sigma}^{[\delta\cap\sigma]^{<\theta}})$.

Proof: For $\gamma < \lambda$, select two bijections $j_{\gamma}: \gamma \cap \sigma \longrightarrow \gamma$ and $k_{\gamma}: P_2(\sigma) \longrightarrow P_2(\gamma \cup \sigma)$ so that

- (i) If $\gamma \leq \sigma$, then j_{γ} is the identity on γ , and k_{γ} the identity on $P_2(\sigma)$.
- (ii) If $\gamma > \sigma$, then $k_{\gamma}(\emptyset) = \emptyset$ and $k_{\gamma}(\{\zeta\}) = \{j_{\gamma}(\zeta)\}.$

Let q denote the inverse of k_{δ} . Set $W = \{a \in P_{\kappa}(\lambda) : a \cap \kappa \in \kappa\}$ and

$$A = \widehat{\{\delta\}} \cap W \cap C_q^{\kappa,\lambda} \cap (\Delta_{\gamma \in \lambda} C_{k_n}^{\kappa,\lambda}).$$

We have $W \in (NS_{\kappa,\lambda}^{\kappa})^*$, $C_q^{\kappa,\lambda} \in (NS_{\kappa,\lambda}^{\delta \cup \sigma})^*$ and for every $\gamma \in \lambda$, $C_{k\gamma}^{\kappa,\lambda} \in (NS_{\kappa,\lambda}^{\sigma})^*$. Hence A belongs to $NS_{\kappa,\lambda}^*$ (and so to $(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$). Select a collection $\mathcal F$ of functions from $P_{\overline{\theta}\cdot 3}(\delta\cap\sigma)$ to $P_3(\sigma)$ so that $|\mathcal F|=\overline{\cot}(NS_{\kappa,\sigma}^{[\delta\cap\sigma]^{<\theta}})$ and for every $g\colon P_{\overline{\theta}\cdot 3}(\delta\cap\sigma)\longrightarrow P_3(\sigma)$, there is $x\in P_\kappa(\mathcal F)\setminus\{\emptyset\}$ with

$$\bigcap_{f \in x} \{a \in C_f^{\kappa,\sigma} : a \cap \kappa \in \kappa\} \subseteq C_g^{\kappa,\lambda}.$$

For $f \in \mathcal{F}$, define $\overline{f}: P_{\overline{\theta},3}(\delta) \longrightarrow P_3(\sigma)$ by $\overline{f}(e) = f(j_{\delta}^{-1}(e))$.

Now let $h: P_{\overline{\theta}\cdot 3}(\delta) \longrightarrow P_3(\lambda)$. Pick $\gamma \in \lambda$ so that $h(e) \subseteq \gamma$ for all $e \in P_{\overline{\theta}\cdot 3}(\delta)$. Define $g: P_{\overline{\theta}\cdot 3}(\delta \cap \sigma) \longrightarrow P_3(\gamma \cap \sigma)$ by $g(d) = j_{\gamma}^{-1}(h(j_{\delta}[d]))$. Select

 $x \in P_{\kappa}(\mathcal{F}) \setminus \{\emptyset\}$ so that $\bigcap_{f \in x} \{a \in C_f^{\kappa,\sigma} : a \cap \kappa \in \kappa\} \subseteq C_g^{\kappa,\lambda}$. Set $Y = A \cap \{\gamma\} \cap \bigcap_{f \in x} C_f^{\kappa,\lambda}$. We claim that $Y \subseteq C_h^{\kappa,\lambda}$. To prove the claim, let $b \in Y$ and set $a = b \cap \sigma$. Obviously, $a \cap (\overline{\theta} \cdot 3) = b \cap (\overline{\theta} \cdot 3)$ and $a \cap \kappa \in \kappa$. Let $f \in x$ and $d \in P_{|a \cap (\overline{\theta} \cdot 3)|}(a \cap (\delta \cap \sigma))$. We have $j_{\delta}[d] \in P_{|b \cap (\overline{\theta} \cdot 3)|}(b \cap \delta)$, since $b \in C_{k_{\delta}}^{\kappa,\lambda}$. So it follows from $b \in C_f^{\kappa,\lambda}$ that $f(d) \subseteq b \cap \sigma$. Thus $a \in \bigcap_{f \in x} C_f^{\kappa,\sigma}$, hence $a \in C_g^{\kappa,\sigma}$. Now let $e \in P_{|b \cap (\overline{\theta} \cdot 3)|}(b \cap \delta)$. Since $b \in C_g^{\kappa,\lambda}$, we have $j_{\delta}^{-1}(e) \in P_{|a \cap (\overline{\theta} \cdot 3)|}(a \cap (\delta \cap \sigma))$. From $a \in C_g^{\kappa,\sigma}$, we can infer that $j_{\gamma}^{-1}(h(e)) \subseteq a$. It follows that $h(e) \subseteq b$, since $b \in C_{k_{\gamma}}^{\kappa,\lambda}$. This completes the proof of the claim. Now given $B \in (NS_{\kappa,\lambda}^{[\delta]^{<\sigma}})^+ \cap P(A)$, we get

$$B \cap \widehat{\{\gamma\}} \cap \bigcap_{f \in x} C_{\overline{f}}^{\kappa,\lambda} \subseteq B \cap C_h^{\kappa,\lambda}.$$

Consequently, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) \leq |\mathcal{F}| \cdot \overline{\operatorname{cof}}(I_{\kappa,\lambda}|B).$

PROPOSITION 7.10: Let σ be a strong limit cardinal, and let $\tau = (cf(\sigma))^+$. Assume that $\theta < \tau < \kappa < \sigma \le \delta < \sigma^+ \le \lambda \le 2^{\sigma}$ and there exists a $[\sigma]^{<\tau}$ -normal ideal on $P_{\kappa}(\lambda)$. Then there is $T \in (NS_{\kappa,\lambda}^{[\delta]^{<\tau}})^*$ such that (a) $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|T = I_{\kappa,\lambda}|T$, and (b) $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|T) = \sigma$.

Proof: By Proposition 5.3, there is $D \in (NS_{\kappa,\lambda}^{[\sigma]^{<\tau}})^*$ such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|D) = \sigma$. Furthermore, Propositions 3.1 and 4.1 (iv) yield $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) \leq \sigma \cdot \lambda^{\sigma} = |\delta|^{<\tau}$. Therefore, by Lemma 7.8, there is $B \in (NS_{\kappa,\lambda}^{[\delta]^{<\tau}})^*$ such that $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) = \sigma$. From Corollary 7.5 we can infer that there is $C \in I_{\kappa,\lambda}^+$ such that $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B = I_{\kappa,\lambda}|C$. Then $B \setminus C \in NS_{\kappa,\lambda}^{[\delta]^{<\theta}}$, hence $P_{\kappa}(\lambda) \setminus C \in NS_{\kappa,\lambda}^{[\delta]^{<\tau}}$. So setting $T = B \cap C$, we have $T \in (NS_{\kappa,\lambda}^{[\delta]^{<\tau}})^*$ and $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|T = I_{\kappa,\lambda}|T$. Proposition 5.2 (iii) gives $\sigma \leq \overline{\operatorname{cof}}(I_{\kappa,\lambda}|T)$. Conversely, $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|T) \leq \sigma$ is true because $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|T) \leq \overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) = \sigma$.

Note that if σ is a strong limit cardinal such that $\overline{\theta} \leq cf(\sigma) < \kappa < \sigma \leq \delta < \sigma^+ \leq \lambda < \sigma^{+\kappa}$, then by Corollary 3.2, Corollary 3.3 and Proposition 4.1 (iv), we have $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) = \lambda$, hence by Corollary 7.3 and Proposition 5.2 (iii), there is $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^*$ such that (a) $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A = I_{\kappa,\lambda}|A$, and (b) $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) = \lambda$.

PROPOSITION 7.11: Let σ be a strong limit cardinal, and let $\tau = (cf(\sigma))^+$. Assume that $\tau < \kappa \leq \delta < \sigma$ and there exists a $[\sigma]^{<\tau}$ -normal ideal on $P_{\kappa}(\lambda)$. Then

- (i) If $\sigma < \lambda \le 2^{\sigma}$, then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) = \sigma$ for some $B \in (NS_{\kappa,\lambda}^{[\sigma]^{<\theta} \cdot \tau})^*$.
- (ii) If $\lambda = \sigma^+$ and $\tau < \theta$, then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) = \sigma$ for some $B \in (NS_{\kappa,\lambda}^{[\lambda]^{<\tau}})^*$.

Proof:

(i) Suppose $\sigma < \lambda \leq 2^{\sigma}$. Then by Proposition 5.3, there is D in $(NS_{\kappa,\lambda}^{[\sigma]^{<\sigma}})^*$ (and hence in $(NS_{\kappa,\lambda}^{[\sigma]^{<\theta \cdot \tau}})^*$) such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|D) = \sigma$. Furthermore, we have

$$\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) \le \operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}) \le \lambda^{(|\delta|^{<\overline{\theta}})} \le \lambda^{\sigma} = \sigma^{<\theta \cdot \tau}$$

Now the assertion follows from Lemma 7.8.

(ii) Suppose $\lambda = \sigma^+$ and $\tau < \theta$. Then by Lemma 7.9 and Proposition 4.1 (iii), there is $A \in NS_{\kappa,\lambda}^*$ such that for every $B \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+ \cap P(A)$, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) \leq \sigma \cdot \overline{\operatorname{cof}}(I_{\kappa,\lambda}|B)$. Moreover, by Proposition 5.3, there is $D \in (NS_{\kappa,\lambda}^{[\sigma]^{<\tau}})^*$ such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|D) = \sigma$. Now put $B = A \cap D$. Obviously, $B \in (NS_{\kappa,\lambda}^{[\lambda]^{<\tau}})^*$. Proposition 4.7 gives $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) \geq \sigma$. On the other hand, we have $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) \leq \sigma \cdot \overline{\operatorname{cof}}(I_{\kappa,\lambda}|D) = \sigma$.

With GCH, we obtain the following picture.

Proposition 7.12: Assume that the GCH holds and $\delta \geq \kappa$. Then

- (i) If $\delta = \lambda$ and $cf(\lambda) < \overline{\theta}$, then $\overline{\mathrm{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \lambda^{++}$ for all $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^{+}$.
- (ii) If $\kappa \leq cf(\lambda) \leq |\delta|^{<\overline{\theta}}$, then $\overline{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \lambda^+$ for all $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$.
- (iii) Assume that (a) $\delta < \lambda$ and $cf(\lambda) < \kappa$, or (b) $\delta = \lambda$ and $\overline{\theta} \le cf(\lambda) < \kappa$, or (c) $\delta < \lambda = \sigma^+$ and $cf(\sigma) \ge \kappa$, or (d) λ is a limit cardinal and $|\delta|^{<\overline{\theta}} < cf(\lambda)$. Then $\overline{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \lambda$ for all $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$. (iv) Assume that $\lambda = \sigma^+$ and either $\delta < \sigma$ and $cf(\sigma) < \overline{\theta}$, or $\delta < \lambda$, $\overline{\theta} \le \delta$
- (iv) Assume that $\lambda = \sigma^+$ and either $\delta < \sigma$ and $cf(\sigma) < \overline{\theta}$, or $\delta < \lambda$, $\overline{\theta} \le cf(\sigma) < \kappa$ and κ is not the successor of a cardinal of cofinality less than or equal to $cf(\sigma)$. Then $\overline{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \sigma$ for some $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$.

Proof:

- (i) Suppose $cf(\lambda) < \overline{\theta}$, and let $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^+$. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|A) \leq \operatorname{cof}(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|A) = \lambda^{++}$. Furthermore, we have $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|A) > \lambda^+$ since $u(\kappa,\lambda^+) < \lambda^{++}$.
- (ii) Assume $\kappa \leq cf(\lambda) \leq |\delta|^{<\overline{\theta}}$, and fix $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$. Then $\overline{\cot}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A)$ $\leq \cot(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) = \lambda^+$. But clearly we have $u(\kappa,\lambda) < \lambda^+$, which gives $\overline{\cot}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A) > \lambda$.

- (iii) By Proposition 4.1.
- (iv) By Propositions 7.10 and 7.11.

Let us next consider the case that was not dealt with in Proposition 7.12, namely the case when $\lambda = \sigma^+$, $\kappa = \nu^+$, $\bar{\theta} \cdot cf(\nu) < cf(\sigma) < \kappa$ and $\delta < \lambda$.

PROPOSITION 7.13: Let θ' be a cardinal with $\theta \leq \theta' \leq \kappa$. Assume that (a) $\lambda = \sigma^+$, (b) $\sigma > \kappa$, (c) either $\mathcal{A}^{\sigma,\rho}_{\kappa,\lambda}$ holds for some regular infinite cardinal $\rho < \kappa$, or $\mathcal{B}^{\sigma}_{\kappa,\lambda}$ holds, (d) either $\kappa \leq \delta < \sigma$ and $\tau^{(|\delta|^{<\overline{\theta}})} < \sigma$ for every cardinal $\tau < \sigma$, or $\sigma \leq \delta < \lambda$, $\overline{\theta} \leq cf(\sigma) < \kappa$ and σ is a strong limit cardinal, and (e) there exists a $[\lambda]^{<\theta'}$ -normal ideal on $P_{\kappa}(\lambda)$. Then there is $B \in (NS^{[\lambda]^{<\theta'}}_{\kappa,\lambda})^+$ such that $\overline{\operatorname{cof}}(NS^{[\delta]^{<\theta}}_{\kappa,\lambda}|B) = \sigma$.

Proof: By Propositions 5.4 (ii) and 5.11, there is $D \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta'}})^+$ such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|D) \leq \sigma$. From Lemma 7.9 we obtain $A \in NS_{\kappa,\lambda}^*$ such that for every $B \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+ \cap P(A)$,

$$\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) \leq \overline{\operatorname{cof}}(I_{\kappa,\lambda}|B) \cdot \overline{\operatorname{cof}}(NS_{\kappa,\sigma}^{[\delta \cap \sigma]^{<\theta}}).$$

Now put $B = A \cap D$. By Proposition 4.1 ((iii) and (iv)) and Corollary 3.2, we have $\overline{\cot}(NS_{\kappa,\sigma}^{[\delta \cap \sigma]^{<\theta}}) = \sigma$. Therefore, $\overline{\cot}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) \leq \overline{\cot}(I_{\kappa,\lambda}|D) \cdot \sigma = \sigma$. Also, $\overline{\cot}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) \geq \sigma$, since $u(\kappa,\nu) < \lambda$ for every cardinal ν with $\kappa \leq \nu < \sigma$.

In particular, with the help of Proposition 6.4, we have: Assume that (a) $\kappa \leq \delta < \lambda = \sigma^+$, (b) σ is a strong limit cardinal with $cf(\sigma) < \kappa$, and (c) \Box_{σ}^* holds. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{\delta}|B) = \sigma$ for some $B \in NS_{\kappa,\lambda}^+$. On the other hand, by Proposition 5.7 and Corollary 6.8, $\omega_{\omega+1} \longrightarrow [\omega_1]_{\omega_{\omega},<\omega_1}^2$ implies that $\overline{\operatorname{cof}}(NS_{\omega_1,\omega_{\omega+1}}^{\delta}|B) > \omega_{\omega}$ for each δ with $\omega_1 \leq \delta < \omega_{\omega+1}$ and each $B \in (NS_{\omega_1,\omega_{\omega+1}}^{\delta})^+$.

If the GCH is assumed, then our question of the existence of sets B such that $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B=I_{\kappa,\lambda}|B$ can be answered completely.

PROPOSITION 7.14: Assume that the GCH holds and $\delta \geq \kappa$. Let χ_0 and χ_1 denote, respectively, the assertions " $NS_{\kappa,\lambda}^{[\delta]^{\leq \theta}} = I_{\kappa,\lambda}|A$ for some $A \in I_{\kappa,\lambda}^+$ " and

	$\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})$	$\operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{< heta}})$	χο	χ1
$ \delta ^{<\overline{\theta}} < cf(\lambda)$	λ	λ	no	yes
$\kappa \le cf(\lambda) \le \delta ^{<\overline{\theta}}$	λ^{+}	λ^{+}		no
$\delta < \lambda \text{ and } cf(\lambda) < \kappa$	λ	λ^{+}	no	yes
$\delta = \lambda \text{ and } cf(\lambda) < \overline{\theta}$	λ ⁺⁺	λ++		no
$\delta = \lambda \text{ and } \overline{\theta} \le cf(\lambda) < \kappa$	λ	λ^{+}	yes	

" $NS_{\kappa,\lambda}^{[\delta]<\theta}|B=I_{\kappa,\lambda}|B$ for some $B\in (NS_{\kappa,\lambda}^{[\delta]<\theta})^+$ ". Then

Proof: See Propositions 4.5, 7.12 ((ii), (iii) and (i)) and 4.1 (iv) for the value of $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})$, and [7] for that of $\operatorname{cof}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}})$. If $|\delta|^{<\overline{\theta}} < cf(\lambda)$, or $\delta < \lambda$ and $cf(\lambda) < \kappa$, then by Corollary 7.3, χ_1 holds, but by a result of [7], χ_0 fails. If $\delta = \lambda$ and $\overline{\theta} \le cf(\lambda) < \kappa$, then χ_0 holds by Proposition 7.6. Finally, if either $\kappa \le cf(\lambda) \le |\delta|^{<\overline{\theta}}$, or $\delta = \lambda$ and $cf(\lambda) < \overline{\theta}$, then $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|B) < \overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B)$ for every $B \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$, hence χ_1 does not hold.

8. Cohen forcing

In this final section we construct a forcing extension in which $NS_{\kappa,\lambda}^{[\zeta]^{<\theta}}|A \neq I_{\kappa,\lambda}|A$ for each ζ with $\kappa \leq \zeta \leq \lambda$, and each $A \in (NS_{\kappa,\lambda}^{[\zeta]^{<\theta}})^+$.

LEMMA 8.1: Let R be a κ -closed notion of forcing. If there exists (in V) a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$, then the same holds in V^R .

Proof: This is clear from Proposition 1.5 (i) in case $\theta < \kappa$ or κ is not a limit cardinal. Otherwise, use Proposition 1.5 (ii) and the fact (see, e.g., Exercise H4 in Chapter VII of [5]) that if κ is Mahlo in V, then κ remains Mahlo in V^R .

LEMMA 8.2: Let μ be a cardinal such that $\kappa \cdot (|\delta|^{<\overline{\theta}})^+ \leq \mu = \mu^{<\mu} \leq \lambda$, and Q be the notion of forcing which adds a Cohen subset of μ . Further, let $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$. Then in V^Q , $P(A) \cap (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+ \cap \nabla^{\mu}I_{\kappa,\lambda} \neq \emptyset$.

Proof: Q can be taken to be the set of all functions q such that $dom(q) \in P_{\mu}(\mu \times \mu)$ and $ran(q) \subseteq 2$. For a Q-generic set G over V, define $F_G: \mu \longrightarrow P_2(\mu)$

as follows. Given $\alpha \in \mu$, put $e_{\alpha} = \{\beta \in \mu : (\bigcup G)(\alpha, \beta) = 1\}$. Now set $F_G(\alpha) = \{ \cap e_{\alpha} \}$ if $e_{\alpha} \neq \emptyset$, and $F_G(\alpha) = \emptyset$ otherwise.

Let us show that $\Vdash_Q A \setminus C_{F_G}^{\kappa,\lambda} \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$. Thus, let $q \in Q$ and $f \colon P_{\overline{\theta} \cdot 3}(\delta) \longrightarrow P_{\kappa}(\lambda)$. Pick $\alpha \in \mu$, $a \in A$ and $\beta \in \mu$ so that $(\{\alpha\} \times \mu) \cap \text{dom}(q) = \emptyset$, $\alpha \in a \in A \cap C_f^{\kappa,\lambda}$ and $\beta \notin a$. Now select $r \in Q$ so that $q \subseteq r$, $r(\alpha,\beta) = 1$, and $r(\alpha,\gamma) = 0$ for all $\gamma < \beta$. Then clearly, $r \Vdash b \notin C_{F_{\kappa}}^{\kappa,\lambda}$.

Suppose that μ is a cardinal such that $\kappa \leq \mu = \mu^{<\mu} \leq \lambda$, and for every $Z \subseteq \lambda^{<\kappa}$ with $P_{\mu}(\mu) \subseteq L[Z]$, there is a subset of μ which is Cohen over L[Z]. Then $NS^{\mu}_{\kappa,\lambda}|A \neq I_{\kappa,\lambda}|A$ for every $A \in (NS^{\mu}_{\kappa,\lambda})^{\dagger}$. To see this, fix $A \in (NS^{\mu}_{\kappa,\lambda})^{\dagger}$. Select $Z \subseteq \lambda^{<\kappa}$ so that $A \in L[Z]$, $P_{\mu}(\mu) \subseteq L[Z]$ and $P_{\kappa}(\lambda) \subseteq L[Z]$. Let $G \subseteq \mu$ be Cohen over L[Z]. By Lemma 8.1, in L[Z][G] we can find $C \in I^{\dagger}_{\kappa,\lambda} \cap P(A)$ and $g \colon P_3(\mu) \longrightarrow P_3(\lambda)$ so that $C \cap \{a \in C_g^{\kappa,\lambda} : a \cap \kappa \in \kappa\} = \emptyset$. Now C and G are like this in V, so we are done.

PROPOSITION 8.3: Let μ be a cardinal such that $\kappa \cdot (|\delta|^{<\overline{\theta}})^+ \leq \mu = \mu^{<\mu} \leq \lambda$, ρ be a cardinal such that $\lambda^{<\kappa} < \rho$, and P be the notion of forcing which adds ρ Cohen subsets of μ . Then in V^P , $NS_{\kappa,\lambda}^{[\mu]^{<\theta}}|A \neq NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A$ for all $A \in (NS_{\kappa,\lambda}^{[\mu]^{<\theta}})^+$.

Proof: P can be identified with the set of all functions p such that $\operatorname{dom}(p) \in P_{\mu}(\rho \times \mu)$ and $\operatorname{ran}(p) \subseteq 2$. Now let G be P-generic over V. For $X \subseteq \rho$, set $G_X = \{p \in G : \operatorname{dom}(p) \subseteq X \times \mu\}$. In V[G], let $A \in (NS_{\kappa,\lambda}^{[\mu]^{<\theta}})^+$. Then there is $\xi < \rho$ with $A \in V[G_{\xi}]$. From Lemma 8.2 we can infer that in $V[G_{\xi}][G_{\{\xi\}}]$, $P(A) \cap (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+ \cap NS_{\kappa,\lambda}^{[\mu]^{<\theta}} \neq \emptyset$. The same inequality must hold in V[G].

COROLLARY 8.4: Assume that $2^{<\kappa} = \kappa \le \delta$. Let ρ be a cardinal such that $\lambda^{<\kappa} < \rho$, and P be the notion of forcing which adds ρ Cohen subsets of κ . Then in V^P , (a) $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|A \ne I_{\kappa,\lambda}|A$ for all $A \in (NS_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$, (b) $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\delta]^{<\theta}}|B) > \lambda^{<\overline{\theta}}$ for all $B \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^+$.

Proof: By Proposition 8.3 we have that in V^P , $NS_{\kappa,\lambda}^{\kappa}|A \neq I_{\kappa,\lambda}|A$ for all $A \in (NS_{\kappa,\lambda}^{\kappa})^+$. Part (a) follows, since $NS_{\kappa,\lambda}^{\kappa} \subseteq NS_{\kappa,\lambda}^{[\delta]^{<\theta}}$. For (b) use Proposition 7.2.

References

- [1] J. Cummings, M. Foreman and M. Magidor, Squares, scales and stationary reflection, Journal of Mathematical Logic 1 (2001), 35–98.
- [2] H. D. Donder, P. Koepke and J. P. Levinski, Personal communication, June 1998.
- [3] H. D. Donder and P. Matet, Two cardinal versions of diamond, Israel Journal of Mathematics 83 (1993), 1–43.
- [4] C. A. Johnson, Seminormal λ -generated ideals on $P_{\kappa}\lambda$, Journal of Symbolic Logic **53** (1988), 92–102.
- [5] K. Kunen, Set Theory, North-Holland, Amsterdam, 1980.
- [6] J. P. Levinski, M. Magidor and S. Shelah, Chang's Conjecture for ℵω, Israel Journal of Mathematics 69 (1990), 161–172.
- [7] P. Matet, C. Péan and S. Shelah, Cofinality of normal ideals on $P_{\kappa}(\lambda)$ I, preprint.
- [8] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides Vol. 29, Oxford University Press, Oxford, 1994.
- [9] S. Shelah, The generalized continuum hypothesis revisited, Israel Journal of Mathematics 116 (2000), 285–321.
- [10] S. Shelah, On the existence of large subsets of $[\lambda]^{<\kappa}$ which contain no unbounded non-stationary subsets, Archive for Mathematical Logic 41 (2002), 207–213.
- [11] S. Shioya, Generating the club filter on $P_{\kappa}\lambda$, Topology and its Applications 122 (2002), 415–419.
- [12] S. Todorcevic, Coherent sequences, in Handbook of Set Theory (M. Foreman, A. Kanamori and M. Magidor, eds.), Kluwer, Dordrecht, to appear.
- [13] S. Todorcevic, Personal communication.